Simulated Annealing




Simulated Annealing: General Idea

Imagine you're trying to find the lowest point in a hilly landscape at night.
e You can’t see far ahead, so you take small steps downhill.
e If you only move downhill (like greedy hill climbing), you might get stuck in a small valley (local minimum) and never find the
deepest valley (global minimum).
Now, here’s where simulated annealing comes in:
Think of yourself as a hiker with a backpack full of energy (heat).
e Atthe start, you're very energetic (high temperature).
o  You don’t mind sometimes walking uphill (taking worse steps).
o  Why? Because maybe going uphill a bit lets you escape a small valley and reach a deeper one later.
e Astime goes on, your energy slowly cools down (temperature decreases).
o  You become less and less willing to go uphill.

o  Eventually, when you’re almost out of energy (temperature near zero), you only move downhill into the best valley you
can find.



Real-Life Analogy: Metal Cooling
The name comes from metallurgy (the science of making metals).

e  When blacksmiths heat metal until it glows, the atoms are very energetic and moving around randomly.
e As the metal slowly cools (annealing), atoms settle into a stable, strong structure.
e If cooled too quickly, the structure is weak (like getting stuck in a local minimum).

e If cooled slowly, the structure becomes optimal and stable (global minimum).



Core Components of Simulated Annealing

Energy Function (Cost/Objective Function)
The Energy Function (often called the Cost Function or Objective Function) represents the quality or fithess of a solution.

e  Definition:
o  The energy function assigns a value (or "cost") to each possible solution in the search space.
o  Lower energy values represent better solutions, and higher energy values represent worse solutions.
e Rolein SA:
o  SAuses the energy function to evaluate how good or bad a solution is. The algorithm attempts to minimize this function,
just as a physical material seeks to minimize its energy state during annealing.
e Example:
o Inthe Travelling Salesman Problem (TSP), the energy function could be the total distance traveled. The goal would be
to minimize this distance.



Temperature (T)
The Temperature (T) controls the algorithm’s willingness to accept worse solutions.

e Initial High Temperature:
o At the start of the algorithm, the temperature is high, which means that the system can explore freely by
accepting both better and worse solutions.
o  The probability of accepting a worse solution is determined by the equation:

p(aB) - op (27

where AE is the difference between the current solution and the new solution.

o If AE is positive (i.e., the new solution is worse), there is still a chance that the solution will be accepted,
especially when T is high.
e Decreasing Temperature:
o As the temperature decreases, the algorithm becomes less likely to accept worse solutions. Eventually,
when the temperature is near zero, the system only accepts better solutions.
e Intuition:
o At high temperatures, the algorithm explores more of the solution space (including suboptimal solutions).
o Atlow temperatures, the algorithm focuses on refining the best solution found so far.



Cooling Schedule
The Cooling Schedule determines how the temperature is decreased over time.

e Cooling Function:
o  The cooling schedule specifies the rate at which the temperature decreases as the algorithm
progresses.
o  Common cooling schedules include:

e Linear Cooling: T' = Ty — ak, where k is the iteration number.
« Exponential Cooling: T = T} - o*, where o < 1 is a constant.

e Logarithmic Cooling: T = To L where k is the iteration number.

log(1-+k)
e Choosing the Right Cooling Schedule:
o Aslow cooling schedule provides more time for the algorithm to explore, increasing the chances of
finding a global optimum but at the cost of longer runtime.
o Afast cooling schedule may lead to quicker convergence, but the system might miss the global
optimum and get stuck in a local minimum.



The Simulated Annealing Algorithm

1. Initialization Phase

e Initial Solution:
o  The algorithm begins with a randomly selected initial solution from the solution space. This solution is often
generated arbitrarily, but it should belong to the set of all possible solutions for the given optimization problem.
o Example: In the Travelling Salesman Problem (TSP), an initial solution might be a random order of visiting cities.
e Initial Temperature (T):
o The algorithm sets an initial temperature (T ), typically high, to allow for broad exploration of the solution space.
The high temperature enables the algorithm to potentially accept worse solutions early on.
o  The initial temperature is a key hyperparameter that influences the initial exploration phase.

2. Generate a New Solution (Neighbor Selection)

e Neighboring Solution:
o  From the current solution, a new neighboring solution is generated by making a small, random perturbation or
modification to the current solution.
o  The neighboring solution should be similar to the current one, ensuring that the search progresses gradually rather
than making large jumps in the solution space.
o Example: In the TSP, a neighboring solution could be generated by swapping the order of two cities in the current
route.



3. Evaluate the New Solution

e Energy Function (Objective Function):
o  The quality of both the current and new solutions is evaluated using the energy function (also known
as the cost or objective function).
o  The energy function represents the quality of the solution—lower values represent better solutions.
e Energy Difference (AE):
o Compute the energy difference between the current solution and the new (neighboring) solution:

AFE = Enew — Ecurrent

e Interpretation of AE:

o If AE < 0, the new solution is better (lower cost) than the current solution.

o If AE > 0, the new solution is worse (higher cost) than the current solution.



4. Acceptance Criteria

Better Solutions (AE < 0):
o If the new solution has a lower cost (i.e., AE < 0), it is immediately accepted as the current solution.
o This ensures that the algorithm always moves toward improving solutions when they are found.
Worse Solutions (AE > 0):
o If the new solution is worse than the current solution (i.e., AE > 0), it can still be accepted based on

a probability: o
P(AE) = exp (#)

Explanation:

m The probability of accepting a worse solution depends on both the temperature (T) and the
energy difference (AE).

m At high temperatures, this probability is higher, allowing the algorithm to explore the solution
space freely. At low temperatures, the probability of accepting worse solutions decreases,
making the algorithm more selective.

This mechanism allows SA to escape local optima by occasionally accepting worse solutions, especially
in the early stages when the temperature is high.



5. Update Temperature

e Cooling Schedule:
o After evaluating and accepting (or rejecting) the new solution, the temperature is reduced
according to a predefined cooling schedule. The cooling schedule dictates how quickly or slowly

the temperature decreases over time.

Types of Cooling Schedules:

1. Linear Cooling:
T=T,—ak
o ais a constant cooling rate.
o The temperature decreases linearly with each iteration.
o Suitable for problems where a steady decrease in temperature is desired.

2. Exponential Cooling:
T=T, o

e qis a constant between 0 and 1.
e The temperature decreases exponentially with each iteration.
e This cooling schedule allows for faster cooling in the later stages of the algorithm.



3. Logarithmic Cooling:

Tp
=
log(1+ k)

 The temperature decreases more slowly, especially in the early iterations,

allowing for thorough exploration of the solution space before converging.

¢ Logarithmic cooling ensures a more controlled, gradual reduction in temperature

and is more computationally expensive.

e Selection of Cooling Schedule:
o The choice of cooling schedule depends on the nature of the problem. Faster cooling schedules
(e.g., exponential) might be used when quick convergence is desired, while slower cooling
schedules (e.g., logarithmic) might be preferred for more thorough exploration.



6. Termination Criteria

e Freezing the System:
o The process continues until the system is "frozen," which typically means the temperature
approaches zero (or becomes very low), effectively stopping the acceptance of worse solutions.
At this point, the algorithm is highly selective and only accepts better solutions.
o  Another common termination criterion is to stop the process when no significant improvement is
observed over a number of iterations.
e Convergence:
o The algorithm is said to converge when no further improvements can be made, or the
temperature has decreased to a point where the solution has stabilized.
o The solution at this point is either the global optimum or a near-optimal solution.
e Stopping Conditions:
o The algorithm can also terminate based on:
m A maximum number of iterations.
m A predefined time limit.
m The difference between consecutive solutions becoming negligible (indicating
convergence).



The Simulated Annealing algorithm

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
current <—problem.INITIAL
forr=1toedo
T < schedule(t)
if 7 = 0 then return current
next <—a randomly selected successor of current
AFE + VALUE(current) — VALUE(next)
if AE > 0 then current < next

else current +— next only with probability e AE/T



Applications of SA

In addition to the well-known applications like the Travelling Salesman Problem (TSP), job scheduling, neural network
training, and VLSI design, Simulated Annealing (SA) has a wide variety of other applications in artificial intelligence (Al) and
related fields. In addition to the well-known applications like the Travelling Salesman Problem (TSP), job scheduling,
neural network training, and VLSI design, Simulated Annealing (SA) has a wide variety of other applications in artificial
intelligence (Al) and related fields. Below are additional applications where SA has been effectively used:

Feature Selection in Machine Learning:.

Hyperparameter Tuning in Machine Learning

Reinforcement Learning Policy Optimization

Al for Game Playing (Game Theory)

Clustering in Data Mining

Path Planning in Robotics

Genetic Algorithm Hybridization

Computer Vision: Image Segmentation

Protein Folding in Bioinformatics

Autonomous Vehicle Navigation

Al for Financial Portfolio Optimization

Spatial Layout Design (Architectural Optimization)

Circuit Routing in Electronic Design Automation (EDA)

3D Object Recognition



Why Simulated Annealing Works in These Applications

Flexibility in Handling Non-Convex and Complex Objective Functions:

e Many real-world problems, especially those in Al, have non-convex objective functions with multiple
local optima. SA is well-suited for such problems because it doesn't just move to better solutions but
also explores worse solutions, helping to avoid local optima.

Works Well in Large, Combinatorial Search Spaces:

e In problems like TSP, job scheduling, and VLSI design, the solution space is vast and highly
combinatorial. SA’s ability to explore large portions of the search space by accepting suboptimal
moves early in the process helps it find global or near-global optima efficiently.



Limitations and Challenges of Simulated Annealing

1. Slow Convergence
2. Sensitivity to Cooling Schedule
3. Not Ideal for Small-Scale Problems

4. Difficulty in Parameter Tuning



Potential Solutions to These Challenges

e Hybrid Algorithms:

o Combine SA with other optimization techniques (e.g., genetic algorithms or tabu search) to
take advantage of SA’s exploration capabilities while using faster algorithms for local
exploitation.

e Adaptive Cooling Schedules:

o Implement adaptive cooling schedules that dynamically adjust the temperature based on the
performance of the algorithm. For example, if improvements are happening rapidly, the
schedule can slow down the cooling rate.

e Parallelization:

o One way to speed up SA and improve exploration is to use parallelization. Multiple instances
of the algorithm can explore different parts of the solution space simultaneously, helping to
identify promising areas more quickly.



N Queens: Simulated Annealing

1. Generating Neighboring States: A neighboring state is generated by moving any one queen to a different row in the same column.

2. Move Acceptance Based on Temperature:

e High Temperature: At the start, the algorithm makes more random moves, even if the new state has more conflicts. The algorithm is
willing to explore the search space more broadly and escape local minima.
o  Action: Move a randomly selected queen to any other row in its column, even if it results in more conflicts (higher cost).
e Low Temperature: As the temperature decreases, the algorithm becomes less likely to accept bad moves. It behaves more like
steepest-ascent hill climbing, focusing on improving moves (those that reduce conflicts).
o  Action: Select a queen and move it to a position that either reduces conflicts or keeps the number of conflicts the same.
However, if a small cost increase happens, it will still be accepted with some probability.

3. Cooling Schedule and Behavior:

e Cooling Schedule: The temperature decreases gradually, controlling how likely the algorithm is to accept worse moves. At high
temperatures, the algorithm is more exploratory, while at low temperatures, it becomes more exploitative, fine-tuning the solution.
e Actions based on Temperature:
o  High Temperature:
m  Explore random neighboring states, accepting worse states frequently.
m  This prevents the algorithm from getting stuck in a local minimum early on.
o Low Temperature:
m  The algorithm becomes more selective, accepting only moves that improve the current solution or slightly worsen it.



Example Walkthrough of Simulated Annealing for N-Queens:

Step 1: Initialize
e Start with a random configuration:
e Example: N = 8, queens placed randomly in each column:

« State: [4,6,3,7,1,8,5,2] (where the numbers represent the row of the queen in each

column).

 |nitial cost: 5 conflicts (e.g., some queens share the same diagonal).

Step 2: Choose a Neighboring State

e Pick a random queen, say the queen in column 2 (currently in row 6), and move it to a

different row, say row 3. This creates a new state:
« New state: [4,3,3,7,1,8,5,2].
* New cost: 6 conflicts (more conflicts than before).



Step 3: Acceptance Decision

* At high temperature: The algorithm may accept this worse move with a certain probability.

Let's assume 7' = 100, and the cost increase AE = 1:

* Acceptance probability: P(AE) = e~ 16 A (.99 (soit's very likely to accept the worse

move).
¢ |f accepted, the new state becomes the current state.
Step 4: Reduce Temperature

e Update the temperature according to the cooling schedule:

° Tnew = 0.95 X Told-

Step 5: Repeat

¢ Continue selecting random moves and making acceptance decisions based on the current
temperature until the temperature is sufficiently low, at which point the algorithm will focus

mostly on reducing the number of conflicts.



Algorithm
Simple Hill Climbing

Steepest-Ascent Hill
Climbing

First-Choice Hill
Climbing

Stochastic Hill
Climbing

Random-Restart Hill

Climbing

Simulated Annealing

Optimality for
Small N

70-80%

85-90%

75-85%

80-85%

95-99%

90-95%

Optimality for
Large NV

<5%

15-20%

10-15%

25-30%

40-50%

70-80%

Steps for Small
N

200-300

150-200

250-350

300-400

500-600 (due to

restarts)

300-500

Steps for Large NV
10,000+ (fails often)

8,000-12,000

9,000-11,000

8,000-10,000

15,000-20,000 (due

to restarts)

10,000-15,000



Prompt-Based Editing for Text Style Transfer

3.3 Discrete Search Algorithm

We perform style-transfer generation by discrete
local search using editing operations, such as word
insertion, deletion, and replacement, following pre-

3.2 Search Objective

We apply an edit-based search for unsupervised
style transfer. This follows the recent development

In our work, we use the SAHC algorithm: in a

search step ¢, SAHC enumerates every editing posi- Dataset | Algorihm ACC% BLEU GM HM
tion and performs every editing operation (namely, SAHC 73.0 401 541 517
word deletion, replacement, and insertion)>. Then YELP FCHC 67.2 31.8 462 43.1
it selects the highest-scored candidate sentence y* SA 66.0 287 435 400

if the score f(y*, x) is higher than f(y(*~1, x) be-

. . . . SAHC 181 28,6 45.6 41.0

fore it reaches the maximum edit steps. Otherwise,
SAHC terminates and takes the candidate y(*~1) as AMAZON | FEHC i1 28 98 357
y SA 632 237 387 344

the style-transferred output. In this way, our SAHC
greedily finds the best edit for every search step
and is more powerful than SA and FCHC in our

Table 5: Results of different search algorithms on the
sentiment transfer datasets.



Unsupervised Paraphrasing by Simulated Annealing

We propose UPSA, a novel approach that
accomplishes Unsupervised Paraphrasing by
Simulated Annealing. We model paraphrase
generation as an optimization problem and pro-
pose a sophisticated objective function, involv-
ing semantic similarity, expression diversity,
and language fluency of paraphrases. UPSA
searches the sentence space towards this objec-
tive by performing a sequence of local edits.

Line # UPSAVariant iBLEU BLEU Rougel Rouge2
1 UPSA 1241 1848 57.06 31.39

2 WO fimkey 10.28 1534 5085 2642
3 wlo fisiea 11.78 1795 57.04 30.80
4 wlo fexp 11.93 21.17 59.75 34091
5  w/ocopy 1142 1725 56.09 29.73
6

w/o annealing 10.56 16.52 56.02 29.25

Let X be a (huge) search space of sentences,
and f(x) be an objective function. The goal is to
search for a sentence x that maximizes f(x). At
a searching step ¢, SA keeps a current sentence
X, and proposes a new candidate x, by local edit-
ing. If the new candidate is better scored by f, i.e.,
f(x«) > f(x¢), then SA accepts the proposal. Oth-

erwise, SA tends to reject the proposal z., but may

still accept it with a small probability ¢ =772

controlled by an annealing temperature 7'. In other
words, the probability of accepting the proposal is

p(accept|x«, x¢, T') = min (1,ef g ). (1)



Simulated Annealing for Emotional Dialogue Systems

ions. In this study, we consider the task of expressing a specific
emotion for dialogue generation. Previous approaches take the emo-
tion as an input signal, which may be ignored during inference. We
instead propose a search-based emotional dialogue system by sim-
ulated annealing (SA). Specifically, we first define a scoring func-
tion that combines contextual coherence and emotional correct-
ness. Then, SA iteratively edits a general response and searches for
a sentence with a higher score, enforcing the presence of the de-
sired emotion. We evaluate our system on the NLPCC2017 dataset.

2.3 Search by Simulated Annealing (SA)

We use the simulated annealing (SA) algorithm to search for a de-
sired utterance. SA starts from a general dialogue response y(© =
argmax Pseqaseq (y]X), obtained by standard beam search (BS) or
diverse beam search (DBS) on the trained Seq2Seq model. Then,
SA maximizes the scoring function (5) by iteratively editing the
candidate response.

Models BLEU Scores Diversity Embedding-Based Metrics Emotion
BLEU-1 BLEU-2 | Dist-1 Dist-2 | Average Greedy Extreme Coherence | accuracy
Seq2Seq 4.24 0.73 0035 0.119 0.497 0.328 0.352 0.582 0.244
§ EmoEmb 1.22 1.64 0.040  0.133 0.532 0.356 0.381 0.594 0.693
'S EmoDS 9.76 2.82 0.050 0.174 0.623 0.403 0.427 0.603 0.746
E ECM 10.23 3.32 0.052  0.177 0.625 0.405 0.433 0.607 0.753
€hL 12.54 3.70 0.065 0.221 0.642 0.438 0.457 0.635 0.823
Seq2Seq BS 10.78 3.11 0.058  0.215 0.765 0.543 0.594 0.690 0.253
g Seq2Seq BS + SA 13.90 4.03 0.051 0.276 0.782 0.569 0.610 0.701 0.928
O Seq2Seq DBS 12.14 3.89 0.061  0.209 0.768 0.545 0.601 0.699 0.264
Seq2Seq DBS + SA | 14.26 4.12 0.053  0.239 0.786 0.556 0.611 0.703 0.942




Local Beam Search




Local Beam Search is a type of heuristic search algorithm that explores the state space in search of a solution by maintaining multiple states
(or solutions) at each step rather than just one. Unlike algorithms like hill climbing or gradient descent that work with a single state and
progress iteratively, local beam search keeps track of k candidate states at each step, aiming to improve efficiency by exploring multiple parts
of the search space simultaneously.

This method is effective in avoiding the problem of getting stuck in local optima, which is common in many single-state local search methods.
It does so by allowing parallel exploration of the search space.

Core Concepts of Local Beam Search

1.

Multiple States:
o Instead of one state, local beam search operates with k states at a time. This means that at each iteration, there is a parallel
exploration happening in k different regions of the state space.
Successor Generation:
o  For each of the k states, their successors (neighboring states) are generated by applying actions or transformations. These are
essentially new states that are one step away from the current states.
Selection of Best States:
o  From all the successors generated across all k states, the best k states are selected based on some evaluation criteria (e.g.,
the value of an objective function). These k states then become the current states for the next iteration.
Termination:
o  The process continues until either a goal state (a solution) is found, or a termination condition is met (such as a maximum
number of iterations, time limit, or convergence).



Algorithm Steps

1.  Initialization:
o  Start with k randomly chosen initial states (or heuristically selected states if prior information is available). These states
form the first beam.
2. Generate Successors:
o  For each state in the current beam, generate all possible successors. Successors are neighboring states that can be
reached by applying some action or transformation to the current state.
3. Evaluate Successors:
o  Evaluate the successors using an evaluation function or objective function that measures the quality of the state (e.g.,
distance to goal, cost, or fitness score).
4. Select the Best k States:
o  From the pool of all successors generated across the k states, select the top k states based on the evaluation function.
These selected states will form the next beam.
5. Repeat:
o  Repeat the process of generating successors and selecting the best states until a goal state is found or a stopping
criterion is met (such as a limit on the number of iterations).
6. Termination:
o  The algorithm terminates if a solution (goal state) is found or if it reaches a stopping criterion such as a time limit, or if
there are no improvements in the best states after several iterations.



Example: Traveling Salesman Problem (TSP)

Consider the Traveling Salesman Problem (TSP), where the objective is to find the shortest possible route that
visits a set of cities exactly once and returns to the starting city. Using local beam search:

1.

Initialization:
o  Start with k = 3 random routes (states), each representing a different ordering of cities.
Successor Generation:
o For each route (state), generate successors by making small changes, such as swapping two cities or
reversing a part of the route.
Evaluation:
o Calculate the total distance of each route (state) as the evaluation metric. The goal is to minimize this
distance.
Selection:
o Choose the 3 shortest routes from the pool of generated successors.
Iteration:
o Repeat the process, generating new routes from the best 3 and selecting the shortest ones, until a
satisfactory route is found or a stopping criterion is met.



Key Properties

1. Parallel Search:

o Unlike single-state search methods (such as hill climbing or gradient descent), local beam
search performs parallel exploration of the search space. By maintaining multiple states, it can
avoid local optima more effectively.

2. Focuses on the Best:

o Local beam search selectively keeps the best k states in each iteration. This means the search
is directed toward regions of the state space that seem most promising, which makes the
search more focused and efficient.



Challenges and Limitations

1. Loss of Diversity:

o A major challenge in local beam search is the potential loss of diversity. If all k states
converge to a similar region of the search space, the algorithm may prematurely focus on a
suboptimal region, missing better solutions elsewhere.

o Solution: Stochastic Beam Search, a variation of local beam search, helps mitigate this by
probabilistically selecting the next k states based on their evaluation scores rather than
deterministically choosing the top k. This keeps diversity in the search process.

2. Computational Overhead:

o Maintaining and evaluating k states in parallel can lead to higher computational costs
compared to single-state search methods, especially if k is large or if generating successors is
computationally expensive.

3. Beam Width:

o Choosing the correct number of beams (the value of k) is crucial. If k is too small, the
algorithm may not explore enough of the search space. If k is too large, it could become
computationally expensive without adding much benefit.



Example of Local Beam Search in N-Queens (With k =3)

Initial Step: Randomly Initialize 3 Board Configurations

 State1:[2,4,6,8,1,3,5,7]
(Cost: 6 conflicts)

+ State2:(3,1,4,7,2,5,8, 6]
(Cost: 4 conflicts)

« State3:[1,3,5,8,6,4,2,7]
(Cost: 5 conflicts)

Step 2: Generate Successors for Each State

For each state, generate new configurations by moving one queen to a different row in its column.

Let's generate a few successors for each state.

. State1:[2,4,6,8,1,3,5,7]

Possible moves for queens:
* Move queen in column 1 (currently row 2) torows 1, 3, ..., 8.
* Move queen in column 2 (currently row 4) torows 1, 2, ..., 8.
+ Continue generating successors by changing positions of other queens.
+ Sample successor: [1,4,6,8,1,3,5, 7] (Cost: 5 conflicts)



- State2:(3,1,4,7,2,5,8, 6]

Possible moves for queens:
e Move queen in column 1 (currently row 3) torows 1, 2, ..., 8.
¢ Move queen in column 2 (currently row 1) to rows 2, 3, ..., 8.
¢ Continue generating successors for other queens.
« Sample successor: [3,2,4,7,2,5,8, 6] (Cost: 3 conflicts)
« State3:[1,3,5,8,6,4,2,7]

Possible moves for queens:
¢ Move queen in column 1 (currently row 1) to rows 2, 3, ..., 8.
e Move queen in column 2 (currently row 3) torows 1, 2, ..., 8.
e Continue generating successors for other queens.

« Sample successor: [1,2,5,8,6,4,2, 7] (Cost: 4 conflicts)



Step 3: Evaluate Successors and Select the Best k&

After generating a large number of successors from each state, evaluate their costs (conflicts).

Here are some sample successors with their costs:
e From State 1:
- [1,4,6,8,1,3,5,7]:5 conflicts
. [3,4,6,8,1,3,5,7]: 4 conflicts
. [2,1,6,8,1,3,5,7]:5 conflicts

e From State 2:
. [3,2,4,7,2,5,8,6]: 3 conflicts
- [3,1,4,7,3,5,8,6]: 4 conflicts
e From State 3:
- [1,2,5,8,6,4,2,7]: 4 conflicts
. [2,3,5,8,6,4,2,7]: 4 conflicts



Now, choose the best 3 states (with the lowest number of conflicts) to continue the search. For
example:

. [3,2,4,7,2,5,8,6] (Cost: 3 conflicts)

. [3,4,6,8,1,3,5,7] (Cost: 4 conflicts)

« [1,2,5,8,6,4,2,7] (Cost: 4 conflicts)

Step 4: Repeat the Process

Repeat the process by generating successors for these 3 selected states, evaluating them, and

selecting the best 3 configurations to continue.

Termination:
» If one of the states reaches 0 conflicts (no queens attacking each other), the algorithm

terminates with a solution.

o [f after several iterations no improvement is made, the algorithm may stop (based on a

predefined stopping criterion).



