
CS 414 - Spring 2009

CS 414 – Multimedia Systems Design
Lecture 4 – Digital Image
Representation

Klara Nahrstedt
Spring 2009

CS 414 - Spring 2009

Administrative

 Group Directories will be established
hopefully today (or latest by Friday)

 MP1 will be out on 1/28 (today)
 Start by reading the MP1 and organizing

yourself as a group this week, start to read
documentation, search for audio and video
files.

Images – Capturing and
Processing

CS 414 - Spring 2009

Capturing Real-World Images

 Picture – two dimensional image captured
from a real-world scene that represents a
momentary event from the 3D spatial
world

CS 414 - Spring 2009

W3

W1W2

r

s

F r= function of (W1/W3);
s=function of (W2/W3)

Presenter
Presentation Notes
If the normal of the viewing plane (the camera direction) is parallel to one of the 3D axes, the mathematical transformation is as follows; To project the 3D point ax, ay, az onto the 2D point bx, by using an Orthographic projection parallel to the y axis(Profile view), the following equation can be used:
bx = sxax + cx by = szaz + cz Where the vector s is an arbitrary scale factor, and c is an arbitrary offset. These constants are optional, and can be used to properly align the viewport. The projection can be shown using Matrix notation (introducing a temporary vector d for clarity)
While orthographically projected images represent the three dimensional nature of the object projected, they do not represent the object as it would recorded photographically or perceived by a viewer observing it directly. In particular, lengths at all points in an orthographically projected image are of the same scale regardless of whether they are far away or near to the virtual viewer. As a result, lengths near to the viewer appear foreshortened.

Image Concepts

 An image is a function of intensity values
over a 2D plane I(r,s)

 Sample function at discrete intervals to
represent an image in digital form
matrix of intensity values for each color plane
 intensity typically represented with 8 bits

 Sample points are called pixels

CS 414 - Spring 2009

Digital Images

 Samples = pixels
 Quantization = number of bits per pixel
 Example: if we would sample and quantize

standard TV picture (525 lines) by using
VGA (Video Graphics Array), video
controller creates matrix 640x480pixels,
and each pixel is represented by 8 bit
integer (256 discrete gray levels)

CS 414 - Spring 2009

Image Representations
 Black and white image

 single color plane with
2 bits

 Grey scale image
 single color plane with

8 bits
 Color image

 three color planes
each with 8 bits

 RGB, CMY, YIQ, etc.
 Indexed color image

 single plane that
indexes a color table

 Compressed images
 TIFF, JPEG, BMP, etc.

2gray levels4 gray levels

Digital Image Representation
(3 Bit Quantization)

CS 414 - Spring 2009

Color Quantization
Example of 24 bit RGB Image

CS 414 - Spring 2009

24-bit Color Monitor

Image Representation Example

128 135 166 138 190 132
129 255 105 189 167 190
229 213 134 111 138 187

135 190
255 167
213 138

128 138
129 189
229 111

166 132
105 190
134 187

24 bit RGB Representation (uncompressed)

Color Planes

Graphical Representation

CS 414 - Spring 2009

Image Properties (Color)

CS 414 - Spring 2009

Color Histogram

CS 414 - Spring 2009

Image Properties (Texture)

 Texture – small surface structure, either
natural or artificial, regular or irregular

 Texture Examples: wood barks, knitting
patterns

 Statistical texture analysis describes
texture as a whole based on specific
attributes: regularity, coarseness,
orientation, contrast, …

CS 414 - Spring 2009

Texture Examples

CS 414 - Spring 2009

Spatial and Frequency Domains
 Spatial domain

 refers to planar region of
intensity values at time t

 Frequency domain
 think of each color plane

as a sinusoidal function of
changing intensity values

 refers to organizing pixels
according to their
changing intensity
(frequency)

CS 414 - Spring 2009

Image Processing Function: 1. Filtering

 Filter an image by replacing each pixel in the
source with a weighted sum of its neighbors

 Define the filter using a convolution mask, also
referred to as a kernel
non-zero values in small neighborhood, typically

centered around a central pixel
generally have odd number of rows/columns

CS 414 - Spring 2009

Convolution Filter

CS 414 - Spring 2009

100 100 100 100 100
100 100 50 50 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100

0 1 0

0 0 0

0 0 0

100 100 100 100 100
100 100 50 50 100

100 100 50 100 100
100 100 100 100 100
100 100 100 100 100

X =

Presenter
Presentation Notes
Here is a mathematician's domain. Most of filters are using convolution matrix. With the Convolution Matrix filter, if the fancy takes you, you can build a custom filter.
What is a convolution matrix? It's possible to get a rough idea of it without using mathematical tools that only a few ones know. Convolution is the treatment of a matrix by another one which is called "kernel".
The Convolution Matrix filter uses a first matrix which is the Image to be treated. The image is a bi-dimensionnal collection of pixels in rectangular coordinates. The used kernel depends on the effect you want.
GIMP uses 5x5 or 3x3 matrices. We will consider only 3x3 matrices, they are the most used and they are enough for all effects you want. If all border values of a kernel are set to zero, then system will consider it as a 3x3 matrix.
The filter studies successively every pixel of the image. For each of them, which we will call the "initial pixel", it multiplies value of this pixel and values of the 8 surrounding pixels by the kernel corresponding value. Then it adds the results, and the initial pixel is set to takes this final result value.
A simple example:
On the left is the image matrix: each pixel is marked with its value. The initial pixel has a red border. The kernel action area has a green border. In the middle is the kernel and, on the right is the convolution result.
Here is what happened: the filter read successively, from left to right and from top to bottom, all the pixels of the kernel action area. It multiplied the value of each of them by the kernel corresponding value and added results: (100*0)+(50*1)+(50*0)*(100*0)+(100*0) +(100*0)+(100*0)+(100*0)+(100*0)+(100*0) = 50. The initial pixel took the value 50. Previously, when the initial pixel had value=50, it took the value 100 of the above pixel (the filter doesn't work on the image but on a copy) and so disappeared into the "100" background pixels. As a graphical result, the initial pixel moved a pixel downwards.

Mean Filter

Convolution filterSubset of image

9549648
22813455
33191545
23141220

















111
111
111

9
1

CS 414 - Spring 2009

Mean Filter

Convolution filterSubset of image

9549648
22813455
33191545
23141220

















111
111
111

9
1

CS 414 - Spring 2009

Common 3x3 Filters

 Low/High pass filter

 Blur operator

 H/V Edge detector

















121
212
121

13
1

















−−−
−−
−−−

111
191
111

















−−− 121
000
121

















−
−
−

101
202
101

















111
111
111

9
1

Example

CS 414 - Spring 2009

Image Function: 2. Edge Detection

 Identify areas of strong
intensity contrast
 filter useless data; preserve

important properties

 Fundamental technique
 e.g., use gestures as input
 identify shapes, match to

templates, invoke commands

Edge Detection

CS 414 - Spring 2009

Simple Edge Detection
 Example: Let assume single line of pixels

 Calculate 1st derivative (gradient) of the
intensity of the original data
 Using gradient, we can find peak pixels in image
 I(x) represents intensity of pixel x and
 I’(x) represents gradient (in 1D),
 Then the gradient can be calculated by convolving the

original data with a mask (-1/2 0 +1/2)
 I’(x) = -1/2 *I(x-1) + 0*I(x) + ½*I(x+1)

CS 414 - Spring 2008

5 7 6 4 152 148 149

Basic Method of Edge Detection

 Step 1: filter noise using mean filter
 Step 2: compute spatial gradient
 Step 3: mark points > threshold as edges

CS 414 - Spring 2009

Mark Edge Points
 Given gradient at each

pixel and threshold
mark pixels where

gradient > threshold as
edges

CS 414 - Spring 2009

Compute Edge Direction

 Calculation of Rate of Change in
Intensity Gradient

 Use 2nd derivative
 Example: (5 7 6 4 152 148 149)
 Use convolution mask (+1 -2 +1)
 I’’(x) = 1*I(x-1) -2*I(x) + 1*I(x+1)
 Peak detection in 2nd derivate

is a method for line detection.

CS 414 - Spring 2009

Presenter
Presentation Notes
Detecting an edge
Taking an edge to be a change in intensity taking place over a number of pixels, edge detection algorithms generally compute a derivative of this intensity change. To simplify matters, we can consider the detection of an edge in one dimension. In this instance, our data can be a single line of pixel intensities. For instance, we can intuitively say that there should be an edge between the 4th and 5th pixels in the following 1-dimensional data:
5 7 6 4 152 148 149 To firmly state a specific threshold on how large the intensity change between two neighbouring pixels must be for us to say that there should be an edge between these pixels is, however, not always an easy problem. Indeed, this is one of the reasons why edge detection may be a non-trivial problem unless the objects in the scene are particularly simple and the illumination conditions can be well controlled.
[edit] Computing the 1st derivative
Many edge-detection operators are based upon the 1st derivative of the intensity - this gives us the intensity gradient of the original data. Using this information we can search an image for peaks in the intensity gradient.
If I(x) represents the intensity of pixel x, and I′(x) represents the first derivative (intensity gradient) at pixel x, we therefore find that:
For higher performance image processing, the 1st derivative can therefore be calculated (in 1D) by convolving the original data with a mask:
−1/2 0 +1/2
[edit] Computing the 2nd derivative
Some other edge-detection operators are based upon the 2nd derivative of the intensity. This is essentially the rate of change in intensity gradient. In the ideal continuous case, detection of zero-crossings in the second derivative captures local maxima in the gradient. Peak detection in the second derivative, on the other hand, is a method for line detection, provided that the image operators are expressed at a proper scale. As noted above, a line is a double edge, hence we will see an intensity gradient on one side of the line, followed immediately by the opposite gradient on the opposite site. Therefore we can expect to see a very high change in intensity gradient where a line is present in the image. To find lines, we can alternatively search for zero-crossings in the second derivative of the image gradient.
If I(x) represents the intensity at point x, and I"(x) is the second derivative at point x:
Again most algorithms use a convolution mask to process quickly the image data:
+1 −2 +1
[edit] Thresholding
Once we have calculated our derivative, the next stage is to apply a threshold, to determine where the result suggest an edge to be present. The lower the threshold, the more lines will be detected, and the results become increasingly susceptible to noise, and also to picking out irrelevant features from the image. Conversely a high threshold may miss subtle lines, or segmented lines.
A commonly used compromise is thresholding with hysteresis. This method uses multiple thresholds to find edges. We begin by using the upper threshold to find the start of a line. Once we have a start point, we trace the edge's path through the image pixel by pixel, marking an edge whenever we are above the lower threshold. We stop marking our edge only when the value falls below our lower threshold. This approach makes the assumption that edges are likely to be in continuous lines, and allows us to follow a faint section of an edge we have previously seen, without meaning that every noisy pixel in the image is marked down as an edge.
[edit] Edge detection operators
1st order: Roberts Cross, Prewitt, Sobel, Canny
2nd Order: Marr-Hildreth, zero-crossings of the second-order derivative in the gradient direction.
Currently, the Canny operator (or variations of this operator) is the most commonly used edge detection method. A large number of edge detection operators have been published but so far none has shown significant advantages over the Canny-type operators in general situations. In his original work, Canny studied the problem of designing an optimal pre-smoothing filter for edge detection, and then showed that this filter could be well approximated by a first-order Gaussian derivative kernel. Canny also introduced the notion of non-maximum suppression, which means that edges are defined as points where the gradient magnitude assumes a maximum in the gradient direction.
On a discrete grid, the non-maximum suppression stage can be implemented by estimating the gradient direction using first-order derivatives, then rounding off the gradient direction to multiples of 45 degrees, and finally comparing the values of the gradient magnitude in the estimated gradient direction. A more refined approach to obtain edges with sub-pixel accuracy is by using the following differential approach of detecting zero-crossings of the second-order directional derivative in the gradient direction (Lindeberg 1998)
that satisfy a sign-condition on the third-order directional derivative in the same direction (for more details, please see the relations between edge detection and ridge detection in the article on ridge detection)
where Lx, Ly ... Lyyy denote partial derivatives computed from a scale-space representation L obtained by smoothing the original image with a Gaussian kernel. In this way, the edges will be automatically obtained as continuous curves with subpixel accuracy. Hysteresis thresholding can also be applied to these differential and subpixel edge segments.
[edit] Noise Reduction
Edge detection is complicated with false edges created by image noise. The number of false edges can be lowered by using image noise reduction techniques before detecting edges.

Summary
 Other Important Image Processing Functions

 Image segmentation
 Image recognition

 Formatting
 Conditioning
 Marking
 Grouping
 Extraction
 Matching

 Image synthesis

CS 414 - Spring 2009

	CS 414 – Multimedia Systems Design �Lecture 4 – Digital Image Representation�
	Administrative
	Images – Capturing and Processing
	Capturing Real-World Images
	Image Concepts
	Digital Images
	Image Representations
	Digital Image Representation �(3 Bit Quantization)
	Color Quantization�Example of 24 bit RGB Image
	Image Representation Example
	Graphical Representation
	Image Properties (Color)
	Color Histogram
	Image Properties (Texture)
	Texture Examples
	Spatial and Frequency Domains
	Image Processing Function: 1. Filtering
	Convolution Filter
	Mean Filter
	Mean Filter
	Common 3x3 Filters
	Example
	Image Function: 2. Edge Detection
	Edge Detection
	Simple Edge Detection
	Basic Method of Edge Detection
	Mark Edge Points
	Compute Edge Direction
	Summary

