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FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.
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The Fourier transform, F(u), of a single variable,
continuous function, f(x), is defined by the equation

F(u) = f f (x)e 12 dx
e Where j=+/-1

e Conversely, given F(u), we can obtain f(x) by means

of the Inverse Fourier transform
f(X) = j F(u)e 2™ du

These two equations comprise the Fourier transform
pair.



e These equations are easily extended to two
variables, u and v:

F(u,v) = f f f (X, y)e 127w dxdy
e And, similarly for the inverse transform,

f(x,y)= J: fw F (u,v)e ") dudv



e The Fourier transform of a discrete function
of one variable, f(x), x=0,1,2,...,M-1, Is given
by the equation

F(u):ﬁhff(x)e‘jz”“”“" for u=0.12,...M -1 (4.2-5)

e Similarly, given F(u), we can obtain the
original function back using the inverse DFT:

M -1 _
f(x)=) F(u)e z™ for x=012,...M -1
u=0



e The concept of the frequency domain, follows
directly from Euler’s formula:

e’ =cos@ + jsin g

e Substituting this expression into Eq. (4.2-5).
and using the fact that cos(-¢)=cos¢ , gives us

M -1
F(u) :ﬁz f (x)[cos 27ux /M — jsin 2zux /M | for u=012,..,.M —1
x=0



¢ In the analysis of complex numbers, we find it
convenient sometimes to express F(u) In
polar coordinates:

F(u) =|F(u)e’™
e Where |Fu)=[R?)+1?)|"

e |s called the magnitude or spectrum of the
Fourier transform, and



ot MW
¢(u) = tan R()

e |s called the phase angle or phase spectrum
of the transform.

e Another quantity that is used In this chapter Is
the power spectrum, defined as the square of
the Fourier spectrum:

Pu) =|F ()" =R?(u) + 12(u)




e The first value of the sampled function is then
fF(Xo) .
e The kth sample gives us f(x, +kAx)

e When we write f(k), It Is understood that we
are utilizing shorthand notation that really
means f(x, + kAx).



e f(X) Is then understood to mean

f(X)= f (X, + XAX)

e F(u) is then understood to mean

A
F(u)=F(uAu)
e AX and Au are inversely related by the expression

1

AU = ——
MAX
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FIGURE 4.2 (a) A
discrete function
of M points, and
(b) its Fourier
spectrum. (¢) A
discrete function
with twice the
number of
nonzero points,
and (d) its Fourier
spectrum.
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e The discrete Fourier transform of a function
(image) f(x,y) of size M*N is given by the
equation

F(U,V) :M_]-NZZ f(X, y)e—2j7z(ule+Vy/N)
e Given F(u,v), we obtai f(x,y) via the inverse

Fourier transform, given by the expression

M-1N-1

f(x,y)= ZZ F (U, v)e2im(ux/M+w/N)

u=0 v=0

for x=0,1,2,...,M-1 and y=0,1,2,...,N-1.



e The Fourier spectrum, phase angle, and
power spectrum:

F(u,v) =[R2(u,v) + I2(u,v)]
| (u, V)
R(u,v)

P(u,v) :\F(u,v)\2 =R*(u,v) + 1 *(u,v)
e Where R(u,v) and I(u,v) are the real and
Imaginary parts of F(u,v), respectively.

1/2

#(u, V) = tan {



e |t IS common practice to multiply the input
Image function by (-1)**¥ prior to computing
the Fourier transform. Due to the properties
of exponentials, it is not difficult to show that

3| (X Y)Y |=Fu-M/2,v=N/2)
e Where s1denotes the Fourier transform of the
argument.



e The value of the transform at (u,v)=(0,0) is

M-1N-1
1

F(O,O)Zmzz f(X,y)

x=0 y=0
o If f(X,y) Is real, its Fourier transform is
conjugate symmetric; that Is
F(u,v)=F (-u,-v)
e From this, it follows that
F(u,v)| =|F(-u,~v)



e The following relationships between samples in the
spatial and frequency domains:

AU = 1
MAX

and
AV = 1
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FIGURE 4.3

(a) Image of a
20 % 40 white
rectangle on a
black background
of size 512 X 512
pixels

(b) Centered
Fourier spectrum
shown after
application

of the log
transformation
given in
Eq.(3.2-2).
Compare with
Fig.4.2.
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e It consists of the following steps:

(1) Multiply the input image by (-1)**Y to center the
transform.

(2) Com
(3) Multi
(4) Com

pute F(u,v), the DFT of the image from (1).
oly F(u,v) by a filter function H(u,v).

pute the inverse DFT of the result in (3).

(5) Obtain the real part of the result in (4).
(6) Multiply the result in (5) by (-1)**.



a
b

FIGURE 4.4

(a) SEM image of
a damaged
integrated circuit.
(b) Fourier
spectrum of (a).
(Original image
courtesy of Dr. 1.
M. Hudak,
Brockhouse
[nstitute for
Materials
Research,
McMaster
University,
Hamilton,
Ontario, Canada.)



e H(u,v) Is called a filter is because it
suppresses certain frequencies in the
transform while leaving others unchanged.

e The Fourier transform of the output image Is
given by
G(u,v)=H(u,Vv)F(u,v)
e The filtered image Is obtained simply by
taking the inverse Fourier transform of G(u,v):

Filtered Image= 3|G(u,v)]



FIGURE 4.6
Result of filtering
the image in

Fig. 4.4(a) with a
notch filter that
set to 0 the
F(0,0) term in
the Fourier
transform.




e Assuming that the transform has been
centered, we can do this operation by
multiplying all values of F(u,v) by the filter
function:

0 if uVv)=(M/2,N/2)

H(u,v)=- _
1 otherwise




Frequency domain filtering operation

Filter

function
Hiu,v)

Inverse
Fourier
transform

Fourier
transform

Hu, v)F(u,v)

Pre-
processing

Post-
processing

f(x.y) g(x, y)
[nput Enhanced
image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.
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FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b} Result of lowpass filtering the image in Fig. 4.4(a).
{c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4(a).




FIGURE 4.8

Result of highpass
filtering the image
in Fig. 4.4(a) with
the filter in

Fig. 4.7(c),
modified by
adding a constant
of one-half the
filter height to the
filter function.
Compare with
Fig. 4 4(a).
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e The discrete convolution of two functions f(x,y)
and h(x,y) of size M*N Is denoted by
f(x,y)*h(x,y) and is defined by the expression

Z

-1IN-1

> f(m,n)h(x-m,y—n)

=0

L

FOGY)=hxy) ==5

0

3
Il
3



e Letting F(u,v) and H(u,v) denote the Fourier
transforms of f(x,y) and h(x,y), the following

result holds:
f(x,y)*h(x,y) < F(u,v)H(u,v)

f(x,y)h(x,y) < F(u,v)*H(u,v)
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FIGURE 4.9

{a) Gaussian
frequency domain
lowpass filter.

(b) Gaussian
frequency domain
highpass filter.

(c) Corresponding
lowpass spatial
filter.

- i - i

(d) Corresponding
highpass spatial
filter. The masks
h(x) shown are used in
4 Chapter 3 for
lowpass and
e highpass filtering.
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e Basic model for filter in the frequency domain
IS given by the following equation
G(u,v)=H(u,Vv)F(u,v)

Where F(u,v) Is the Fourier transform of the
Image to be smoothed.

e The objective Is to select a filter transfer
function H(u,v) that yields G(u,v) by
attenuating the high-frequency components
of F(u,v).



Ideal Lowpass Filter
Butterworth Lowpass Filters
Gaussian Lowpass Filter

Additional Examples of Lowpass Filtering



e The transfer function of a two-dimensional(2-
D) ideal lowpass filter(ILPF) is:
1 if D(u,v)<D,
H(u,v)= _
0 if D(u,v)>D,
e The distance from any point (u,v) to the
center of the Fourier transform is given by

D(u,v) = [(u - M/2)2 + (v - N/2)2]Y/2,



ldeal Lowpass Filters

Hiu, v) Hu, v)

i it v)

a b c

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross section.



ldeal Lowpass Filters

e Image power

Image power (~,) Is obtained by summing
the component of the power spectrum at
each point (u,v), for v = 0,1,2,.. M-1 and v
=012,..N-1

A circle of radius r with origin at the center
of the frequency rectangle encloses a =
100 [==P(u,v)/P]



ldeal Lowpass Filters

aaaaaadd

a b

FIGURE 4.11 (a) An image of size 500 x 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radn values of 5. 15, 30, 80, and 230, which enclose 92.0,
Ud.6,96.4, 950, and 99.5% of the image power, respectivelv.



ldeal Lowpass Filters r
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FIGURE 4.13 (a) A frequency-domain ILPF of radius 5. (b} Corresponding spatial
filter (note the ringing). (c) Five impulses in the spatial domain, simulating the values

of five pixels. (d) Convolution of (b) and (c) in the spatial domain
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FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoft
frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b).
3% of the total, respectively.

ab
cd e
e T power removed by these filters was 8,5.4,3.6,2, and 0.5

The



ldeal Lowpass Filters

e As the filter radius increases, less and
less power Is removed, resulting In less
severe blurring.

e Fig 4.12(c) through (e) are
characterized by “ringing” which
becomes finer in texture as the amount
of high frequency content removed
decreases.



ldeal Lowpass Filters

e Ringing effect occurs along the edges of
the filtered spatial domain image
(illustrated in a Figure).

e Next slide figure shows the shape of the
one-dimensional filter in both the
frequency and spatial domains for two
different values of D,

e \We obtain the shape of the two-
dimensional filter by rotating these
functions about the y-axis.
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Butterworth Lowpass Filters

Ideal filtering simply cuts off the Fourier
transform. It is easy to implement,
however, It has the disadvantage of

Introducing unwanted artifacts (ringing)
Into the result.

One way of avoiding these artifacts Is to

use a fiIféfUnbeﬁraB:(iWith a cutoff
DO

that is less sharpl



Butterworth Lowpass Filters | 3¢

Sl e

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders 1 through 4.



Lowpass
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FIGURE 4.15 (a) Original image. (bj—(f) Results of fillering with BLPEFs of order 2,

with cutoff frequencies at radii of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b).

Compare with Fig. 4.12.



Butterworth Lowpass Filters | $2::

AR VARV,
abcd

FIGURE 4.16 (a)-(d) Spatial representation of BLPFs of order 1, 2. 5, and 20. and corresponding gray-level
profiles through the center of the filters (all filters have a cutoff frequency of 5). Note that ringing increases
as a function of filter order.
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Gaussian Lowpass Filters

e The form of these filters in two
dimensions Is given Bé(u v)

H(u,v) =exp(
l
H (u, V) = exp(= ZD(SO’ V)y

e [D(u,v)is the distance from the origin of
the Fourier transform, which we assume
has been shifted to the center of the

'Flf'f\ﬂl FaYaYa\VW/i If'f\f\'"ﬁhﬂlf\



Gaussian Lowpass Filters $3:

Hu, v) Hu. v)

0.667

abc

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c¢) Filter
radial cross sections for various values of D,.
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FIGURE 4.18 (a) Criginal image. (b)—) Results of fillering with Gaussian lowpass  a b
filters with cutofl frequencies set at radii values of 5. 15, 30, B0, and 230, as shown in cod
Fig 4.11({bk). Compare with Figs. 4.12 and 4.15. e f




Lowpass FiIterinQ

e Fig. 4.19 shows a sample of text of 'poor
resolution that may be occurred from
fax transmission, duplicated material,
and historical records.

e Fig 4.19(a) shows characters in a
document have distorted shapes. Many

C

o FI

naracters are broken.

g 4.19(b) shows “repaired” characters

by this simple process using a Gaussian
lowpass filter with D, = 80



Gaussian Lowpass Filters

SEE

FIGURE 4.19

(a) Sample text of
poor resolution
{note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

Historicaliy, certain computer
programs were written using
only two digits rather than
four to define the applicable
yaar., Accordingly, ithe
company's software may
recognize a date using "0G0"
as 1900 rather than the vEar

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEAr

=
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Additional Examples of
Lowpass Filtering

Fig. 4.20 shows an application of lowpass
filtering to produce a smoother, softer-looking
result from a sharp original. The smoothed
Images look quite soft and pleasing

-1g. 4.21 shows images with prominent scan
Ine.

_owpass filtering a crude but simple way to
reduce the effect of these lines.

Fig. 4.21(b) shows an image with D, = 30

Fig. 4.21(c) shows an image with D, = 10




Gaussian Lowpass Filters

abc

FIGURE 4.20 (a) Original image (1028 X 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
(¢) Result of filtering with a GLPF with Dy = 80. Note reduction in skin fine lines in the magnified sections
of (b) and (c).




Gaussian Lowpass Filters ses:

dhie

FIGURE 4.21 (a) Image showing prominent scan lines. (b) Result of using a GLPF with D, = 30. (¢) Result
of using a GLPF with Dy = 10. (Original image courtesy of NOAA.)



FIGUEE 24-10

Two-dimensional sinusoids.
Image sime and cosine waves
have both a frequency and a
direction. Four examples are
shown here. These spectra
are displayed with the low-
frequencies at the coruers.
The circles in these spectra
show the location of zero
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FIGURE 24.9

Frequency spectrum of an image. The example image,
shown in (a), is a microscopic photograph of the silicon
surface of an integrated circuit. The frequency spectrum
can be displayed as the real and imaginary parts, iﬁcmru in
(b}, or as the magnitude and phase, shown in {c). Figures
(b) & (c) are displayed with the low-frequencies at the
comers and the lngh-frequencies at the center. Since the
frequency domain 1s periodic, the display can be rearranged
to reverse these positions. This is shown in (d), where the
magnitude and phase are displayed with the low-frequencies
located at the center and the high-frequencies at the commers.

b. Frequency specttum displayed
in rectangular form (as the real
and IMaginaTy pars).

. Frequency spectrum displayed
in polar form (as the magnitude
and phase}.

Magnitmda

d. Frequency spectrum displayed
in pelar form, with the spectmm
shified to place zero frequency at
the center.

a. Image
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Sharpening Frequency Domain Filters

Image sharpening can be achieved by a
highpass filtering process, which
attenuates the low-frequency components
without disturbing high-freqguency
Information.

Zero-phase-shift filters: radially symmetric
and completely specified by a cross section.

H,,U,v)=1-H, (u,v)



Sharpening Frequency Domain Filters

Fig. 4.22 shows typical 3-D plots Image
representations and cross sections for these
filters (IHPF, BHPF, GHPF).

Fig. 4.23 illustrates what these filters look like In
the spatial domain. A spatial representation of a
frequency domain filter Is obtained by
()multiplying H(u,v) by (-1)"*V for centering
(2)computing the inverse DFT (3) multiplying the
real part of the inverse DFT by (-1)**
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FIGURE 4.22 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



a b ¢

FIGURE 4.23 Spatial representations of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency
domain highpass filters. and corresponding grav-level profiles.
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ldeal Highpass Filters

e A 2-D ideal highpass filter (IHPF) Is
defined as

0 if D(u,v)< D,

1 if D(u,v)> D,

e D,is the cutoff distance measured.

e This filter is the opposite of the ideal
lowpass filter.

H(u,v) =+




ldeal Highpass Filters

Fig. 4.24(a) Is so severe that it produced
distorted, thickened object boundaries. Edges on
the top three circles do not show well.

The result for O, = 80 is more of what a high
pass-filtered image should look like. The edges
are much cleaner and less distorted, and the
smaller objects have been filtered properly.



ldeal Highpass Filters 43
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b).
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Butterworth Highpass Filters

e The transfer function of the Butterworth
highpass filter (BHPF) of order n and
will cutoff frequency locus at distance
D,from the origin is given by

1
Do ]2n

D(u,Vv)

e High-frequency emphasis: Adding a
constant to a highpass filter to preserve
the low-frequency components.

H(u,v) =

1+]



Butterworth Highpass Filters

Fig. 4.25: The boundary is much less distorted
than in Fig. 4.24, even for the smallest value of

cut off frequency.

Since the center spot sizes of the IHPF and the
BHPF are similar, the performance of the two

filters 1 terms of filtering the smal
comparable. The transition into hig
cutoff frequencies is much smoot
BHPF

er objects Is
ner values of

ner with the



Butterworth Highpass Filters | 3:¢
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FIGURE 4.25 Results of highpass filtering the image in Fig. 4.11(a) using a BHPF of order 2 with D, = 15,
30, and 80, respectively. These results are much smoother than those obtained with an ILPF.
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Gaussian Highpass Filters

e The transfer function of the Gaussian
Highpass Filters (GHPF) with cutoff
frequency locus at distance D,from the
origin Is given by

—Dz(u,v))

H(u,v)=1-ex
(u,v) p( 2D,



Gaussian Highpass Filters

e Fig. 4.26: As expected, the results
obtained are smoother than with the
previous two filters. Even the filtering of
the smaller objects and thin bars
cleaner with the Gaussian filter.



Gaussian Highpass Filters

e e

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with Dy = 15.
30, and 80, respectively. Compare with Figs. 4.24 and 4.25.
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Laplacian in the Frequency Domain

e It can be shown that:

I3[V (6 y) [=—(u® +v*)F (u,v)

e The Laplacian can be implemented In
the frequency domain by using the filter
(Shift to center)

H(u,v) =—(u®+v?)
= [(uU-M/2)2+(vV=N/2)%)].



Laplacian in the Frequency Domain

e The laplacian-filtered Image In ‘the
spatial domain Is obtain by computing
the Inverse Fourier Transform of
Hu,v)F(u,v)

VaE(Xy) =3 {-J(u-M/2)*+(v=N/2)*IJF (u,v)}.



Laplacian in the Frequency Domain

e Fig. 4.27(a) Is a 3-D perspective plot of

=—[(uU=M/2)*+(v=N/2)?)].
e The function Is center at (M/2,N/2), and

Its value at the top of the dome iIs zero. All
other values are negative.

e Fig. 4.27(b) shows H(u,v) as an image,
also centered.

e Fig. 4.27(c) Is the Laplacian In the spatial
domain.



ab
cd

e
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FIGURE 4.27 (a) 3-D plot of Laplacian in the frequency domain. (b) Image representation of (a).
(c} Laplacian in the spatial domain obtained from the inverse DFT of (b). {d) Zoomed section of the origin
of (¢). (e) Gray-level profile through the center of (d). (f) Laplacian mask used in Section 3.7.




Laplacian in the Frequency Domain

e Fig. 4.28(a) Is the same image in as Fig. 3.40(a).
Fig. 4.28(b) shows the result of filtering this
Image In the frequency domain using

VAE(XY) =3 [u-M/2)*+(v-N/2)*]F (u,v)}.
e Fig. 4.28(c) show the scaled image (for display

only)

e Fig. 4.28(d) should be compared with Fig. 3.40,
which shows exactly the same sequence of steps
but computed using only spatial domain
technigues. The results are identical for all
practical purposes.



ab
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FIGURE 4.28

(a) Image of the
North Pole of the
moon.

(b) Laplacian
filtered image.

(¢} Laplacian
image scaled.

(d) Image
enhanced by
using Eq. (4.4-12).
(Original image
courtesy of
NASAL)
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High-Frequency Emphasis Filtering



Unsharp Masking, High-Boost Filtering

e Unsharp masking:
fap(GY) = FO6Y) - fip(xy)

e High boost filtering:

fr(X,y) = Af(x,y) - fi,(X,y)
fo(X,y) = (A-1)f(Xy) + fi,(X,y)
Hop(u,v) = (A-1) + Hp,(u,v)




Unsharp Masking, High-Boost Filtering

e Fig. 4.29 (b) Is a highpass filterd lamge.
e The image In Fig. 4.29(c) was obtained
using
frio(%Y) = (A-1)f(x,y) + fip(x.y)
with A = 2.
This image Is sharper but still too dark.
e Fig. 4.29(d) was obtained with A = 2.7,
which in effect means that the input

Image was multiplied by 1.7 before the
Laplacian was subtracted from It.



Unsharp Masking, High-Boost Filtering

e Fig. 4.29(d) Is not as sharp as Fig. 3.43(d).

The reason for this that a frequency
domain representation of the Laplacian is
closer to the mask that excludes the
diagonal neighbors [Fig. 4.27(f)].

e It is known that a mask that includes the
diagonal neighbors produces slightly
sharper results. They do become evident
for images with larger features.



i
cd

FIGURE 4.29
Same as Fig. 3.43,
but using
frequency domain
filtering. (a) Input
image.

(b) Laplacian of
(a). (¢) Image
obtained using
Eq. (4.4-17) with
A =2.(d)Same
as (¢), but with

A = 2.7.(Original
image courtesy of
Mr. Michael
Shaffer,
Department of
Creological
Sciences,
University of
Oregon, Eugene.)




High-Frequency Emphasis Filtering

e Sometimes it Is advantageous to accentuate
the contribution to enhancement made by
the high-frequency component of an image.

e We multiply a high pass filter function by a
constant and add an offset so that the zero
frequency term is not eliminated by the filter.

the(uN) — a+thp(u1V),
where a>=0 and b>a.
| Typical a = [0.25,0.5] and b = [1.5,2.0] ]



High-Frequency Emphasis Filtering

e Fig. 4.30(a) shows a chest X-ray with a
narrow range of gray levels. Our objective
IS to sharpen the image.

e Fig 4.30(c) shows image using HFE (with a
= 0.5 and b = 2.0). Although the image Is
still dark, the gray level tonality due to the
low frequency components was not lost.

e Fig. 4.30(d) shows Image that Is been
performing histogram equalization.



High-Frequency Emphasis Filtering

FIGURE 4.30

(a) A chest X-ray
image. (b) Result
of Butterworth
highpass filtering.
(c) Result of high-
frequency
emphasis filtering.
(d) Result of
performing
histogram
equalization on
(c). (Original
image courtesy
Dr. Thomas

R. Gest, Division
of Anatomical
Sciences,
University of
Michigan Medical
School.)




e Background

e Introduction to the Fourier Transform and the
Frequency Domain

e Smoothing Frequency-Domain Filters
e Sharpening Frequency Domain Filters
e Homomorphic Filtering

e Implementation



Homomorphic Filtering

e \We can view an image f(x,y) as a product
of two components:

f(xy)=i(x,y)r(x y)
0 <iI(X,Vy) <
0<r(x,y)<l1

e I(X,y): Hllumination. It Is determined by
the illumination source.

e I(X,y): reflectance (or transmissivity). It is
determined by the characteristics of
Imaged objects.



Homomorphic Filtering

e In some Iimages, the quality of the image has
reduced because of non-uniform illumination.

e Homomorphic filtering can be used to perform
illumination correction.

FOy)=i(xy)r(x y)

e The above equation cannot be used directly In
order to operate separately on the frequency
components of illumination and reflectance.



Homomorphic Filtering

DFT : Z(u,v)=F.(u,v)+F, (u,v)
H(u,v) :  S(u,v)=H u,v)Z(u,v)

(DFT)1: s(X,y)=i(X,y)+r (X,y)
exp : g(x,y) =exp(s(x,y)) =1,(X, y)r,(X,y)

FIGURE 4.31
. Homomorphic
— ? | -1 =Ly R - .
fle.y) C22 In DFI H(u.v) [~ =|(DFT) exp g(x, v) T T et
for image

enhancement.




Homomorphic Filtering

e By separating the illumination and
reflectance components, homomorphic
filter can then operate on them
separately.

e lllumination component of an Image
generally has slow variations, while the
reflectance component vary abruptly.

e By removing the Ilow freqguencies

(highpass filtering) the effects of
Illumination can be removed .



Homomorphic Filtering

e A good idea of control can be gained over the
Illumination and reflectance components with a
homomorphic filter. This control requires
specification of a filter function H(u,v) that affects
the low and high frequency components of the
Fourier transform in different ways.

e Fig. 4.32 shows a cross section of such a filter. If
the parameters Y and Y ., are chosen so that v
<land vy ,>1.

e The curve In Fig. 4.32 can be approximated using
modified Gaussian highpass filter:

H (u,v) = (7, — 7 )[L—exp(-c(D*(u,v)/ D1+ 7,



Homomorphic Filtering

e Fig. 4.33 is typical of the results that can be
obtained with the homomorphic filtering function
In Fig. 4.32.

e Fig. 4.33(b) shows the result of processing this
Image by homomorphic filtering, with ¥y, = 0.5
Y ,=2.0 In the filter function of Fig. 4.32.

e A reduction of dynamic range in the brightness,
together with an increase Iin contrast, brought out
the details of objects inside the shelter and
balanced the gray levels of the outside wall. The
enhanced image also is sharper.



Homomorphic Filtering

D{u., v)

FIGURE 4.32
Cross section of a
circularly
svmmetric filter
function. D(u, )
1s the distance
from the origin of
the centered
transform.



Homomorphic Filtering

4:h

FIGURE 4.33

(a) Original
image. (b) Image
processed by
homomorphic
filtering (note
details inside
shelter).
(Stockham. )
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e The Fourier transform pair has the following
translation properties:

f (X, y)ejZﬂ(UoX/l\/l+Voy/N) o F(U . UO,V _VO) (46'1)

and

F (X=X, Y= Vy) < F(u,v)e izroomaum  (4.6-2)



e When u,=M/2 and v,=N/2 | it follows that
ej27z(u0x/M+voy/N) _ ej;z(x+y) _ (_1)x+y
In this case, Eqg. (4.6-1) becomes

f(X,Y)-D"™" < FUuU-M/2,v—N/2)

and, similarly

f(x-M/2,y-N/2) < F(u,v)(-)"



Distributivity snd scaling

e From the definition of the Fourier transform it
follows that

e And, In general, that

e The Fourier transfoem is distributive over
addition, but nor over multiplication.



Distributivity snd scaling
e For two scalarsa and b
af (x,y) < aF (u,v)
and

f(ax,by)@iF(u/a,v/b)

ab)




Rotation

e |f we introduction the polar coordinates

X =1rcosd y=rsiné U=wCoSe V=awsIing

e Then f(xy) and Fu,v) become .09 and F(o,¢) .

e Direct substitution into definition of the
Fourier transform yields

f(y,0+6,) < F(w,¢p+6,)



Periodicity and conjugate symmetry

e The discrete Fourier transform has the
following periodicity properties:

F(uv)=FUu+M,v)=FUu,v+N)=FU+M,v+ N)

e The inverse transform also Is periodic:

f(x,y)=1T(Xx+M,y)=F(X,y+N)=Ff(X+M,y+N)



e Conjugate symmetry
F(u,v) = F (-u,~v)

e The spectrum also iIs symmetric

F(u,v)| =|F(-u,~v)




Separability

e The discrete Fourier transform in Eq. (4.2-16)
can be expressed in the separable form

1& —j2aux/M 1& —Jj2my /N
F(u,v) :WZe NZ f(x,y)e
x=0 y=0

1 & i 2720%/ M
:MZF(x,v)e‘J X
x=0

where

N-1
F(x,v) = %Z f(x,y)e 2"
y=0



ab
e

FIGURE 4.34

(a) Fourier
spectrum showing
back-to-back

half periods in

the interval

|0, M — 1].

(b) Shifted
spectrum showing
a full period in the
same interval.

(c) Fourier
spectrum of an
image, showing the
same back-to-back
properties as (a),
but in two
dimensions.

(d) Centered
Fourier spectrum.
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FIGURE 4.35
Computation of
Fu. v) the 2-D Fourier
transform as a
series of 1-D
transforms.

1-ID 1-D
row column
transforms transforms
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e The 1-DFourier transforms:
1 M -1 _
F(u)=—> f(x)e ="
M (4.6-16)

and

F0= 2, Fwe™™ (4.6-17)



e Taking the complex conjugate of Eq. (4.6-17)
and dividing both sides by M yields

1 . 1 M -1
0= ZF (u)e 1zmx/M

e A similar analysis for two variables yields:

<

-1

Z

-1

i f*(X, y): 1 F (U V)e j2z(ux/M+vy/N)

M MN £

Il
o
Il
o

v
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e Figure 4.36 illustrates the significance of
periodicity. The left column of this figure
shows convolution computed using the 1-D
version of Eqg. (4.2-30):

f(X)*h(x) = ﬁhﬂzl f (m)h(x —m)



oLoorm
== 7 g =k

€]

FIGURE 4.36 Left:
convolution of
two discrete
functions. Right:
convolution of the
same functions,
taking into
account the
implied
periodicity of the
DFT. Note in (j)
how data from
adjacent periods
corrupt the result
of convolution.
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e This procedure yields extended, or padded,
functions given by

f(x O0<x<A-1
f(x) = (X)
0 A<x<P

and



(100 = Al il w -

FIGURE 4.37
Result of
performing
convolution with
extended
functions.
Compare

Figs. 4.37(e) and
4.36(e).
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e Suppose that we have two images f(x,y) and
h(Xx,y) of sizes A*B and C*D, respectively.
Wraparound error in 2-D convolution is
avoided by choosing:

P>A+C-1

and
Q>B+D-1



e The periodic sequences are formed by
extending f(x,y) and h(x,y) as follows:

f(x,y) 0<x<A-1and 0<y<B-1

f (x,y)=
(%) {0 A<X<P or BSy<Q

and

h(X,y) 0<x<C-1and 0<y<D-1

h,(X,y) =
(%) {0 C<x<P or D<y<Q



F
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¥
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Correct

: Incorrect

Missing

|

One of the two
original images

- A+ C -] —»f

Zero padding

fe————B+D - 1—— ]

O

Result of filtering in the frequency domain without

properly padding the inputimages

Properly extended (padded) image

Correct

P=A+C—1
Q=B+D-1

4

Q

Result of filtering in the frequency domain with

properly padded input images.

ab

C
FIGURE 4.38
[Mlustration of the
need for function
padding.
(a) Result of
performing 2-1
convolution
without padding.
(b) Proper
function padding.
(c) Correct
convolution
result.



FIGURE 4.39 Padded lowpass filter is the spatial domain (only the real part 1s shown).

-tllll.‘

FIGURE 4.40 Result of filtering with padding. The image is usually cropped to its
original size since there is little valuable information past the image boundaries.
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e The discrete convolution of two functions f(x,y) and h(x,y)
of size M*N iIs denoted by f(x,y)*h(x,y) and is defined by
the expression:

-IN-1

f(x,y)*h(x,y)—Mi > f(m G-,y -n)

e The convolution theorem consists of the following
relationships between the two functions and their Fourier
transforms:

f(x,y)*h(x,y) < F(u,v)H(u,v)

Z

and
f(x,y)h(x,y) < F(u,v)*H(u,v)



e The correlation of two function f(x,y) and
h(X,y) Is defined as:

1 M-1N-1

f(x,y)oh(x,y):w _ Zf*(m,n)h(x+m,y+n)

where f* denotes the complex conjugate of f.



e There Is a correlation theorem, analogous to
the convolution theorem. Let F(u,v) and H(u,v)
denote the Fourier transforms of f(x,y) and
h(x,y).

f(x,y)oh(x,y) < F (u,v)H(u,v)

e An analogous result is that correlation in the
frequency domain reduces to multiplication in
the spatial domain; that is

f(x, y)h(x,y) < F(u,Vv)oH(u,V)




e The autocorrelation theorem:

f(xy)e f(xy) < [Fuv)

e Similarly,

(%, y)] < F(u,v)oF(u,v)
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FIGURE 4.41

(&) Image.

() Template.

() and

(d) Padded
images.

(&) Correlation
function displayed
g% an image.

([} Horizon tal
profile ling
through the
highast value in
(&).showing the
point at which the
best match ook
place.

Highest correlation
value

Giray-level
profile line
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TABLE 4.1
Summary of some
important
properties of the
2-D Fourier
transform.

000
Property Expression(s)
| M-1 N5N-1 . . r
Fourier transform  Flu, v) = o E Zf(L y)e P2/ M vy /N)
IV x=0 y=0
" e O ."!. -H | J"ﬁl- |

[ﬂ\-:_[“.'-:[:, Fourier fry) = S S F(u, v)elsws/i /)

transtorm : i
Polar F[;L 'L‘]I o |F(”~ 'L‘]|E‘ Jebo 1,0

representation

Spectrum

Phase angle
Power spectrum
Average value

Translation

F(u.v)| = [R¥u.v) + I*(w.v)]"*. R = Real(F) and

I = Imag(F)

r JIuv) ]

b(u, v) = t

AU, v) 110 R(u.0) |

P(u,v) = |F(u,v)[

. ] H-%J ;":"T‘I

flxey) = F(0,0) =—= > > f(x.y)
JM.'IV =0 ﬁ]

flx. y)elmme/Movy/Nl oo By — y, v — )
flx — xo, ¥y — yo) & F(u,v)e 2tn/Mo/N)
When x; = uy = M/2and y, = v, = N/2.then
flxy)(-1)y"Y" <= Flu—- M/2,v — N/2)

flx —M/2y — N/2) & Fluv)(-1)"""




Conjugate
symmeltry

[Differentiation

Laplacian

Distributivity

Scaling

Rotation

Periodicity

Separability

Flu,v) = F|*|[—£.'.—-u]

|F|[u.v]| = |F{—u.—v)
Lf”ﬂ = (ju)"Fu, v)

A"Fu, v)
T
Vif(x, y) = —(u* + v*)F(u, v)
MAx y) + fx )] = 3fix )] + I[h(x )]
Lfi(x, ) - Sl y)] # S fi(x )] - S[fa(x, y) ]

af(x, v) = aF(u. v). f(ax, by) < ﬁF(uﬁm v/b)

(—jx)"f(x.y) =

s

ot

Lt

X = rcos# y = rsin# U= wcosg V= wsing
flr.6 + 6y) & Flo,¢ + 6))

Flu,v) = Flu + M.v) = Flu.v + N) = Flu + M.v + N)
flx,y)=flx+ M.y)=f(x.y + N)=f(x + M.y + N)

See Egs. (4.6-14) and (4.6-15). Separability implies that we can
compute the 2-D transform of an image by first computing 1-D
transforms along each row of the image, and then computing a
1-D transform along each column of this intermediate result.
The reverse, columns and then rows, vields the same result.

TABLE 4.1

(continued)



Property Expression(s)

Computation I, [ At Faor (/M + 7/ N)
of the inverse MN (x, y) = MN <~ «~ (. v)e

Fourier

transform using

a forward
transform
algorithm

Convolution®

Correlation’
Convolution
theorem’

Correlation
theorem’

This equation indicates that inputting the function F*(u, v)

into an algorithm designed to compute the forward transform
(right side of the preceding equation) vields f*({x, y)/MN.

Taking the complex conjugate and multiplving this result by

MN gives the desired inverse.

fle,v)=hi(x, y) = M}N 'Fﬂ :“_*:]f[m n)h(x — m,y — n)
flx,v)sh(x.y) = le ;” [] ﬁ]f (m.n)h(x + m.y + n)
flx.v)=hix.y) = Flu.v)H(u v):

flx,vih(x, v) = Flu,v)* H{u v)

flx.v)sh{x.y) < F*(u, v)H(u.v):

fA(x. vih(x.y) = Flu,v) o H{u.v)

TABLE 4.1

(continued)




Some useful FT
Impulse

Craussian
Rectangle

Cosine

Sine

o000
0000
0000
ann
palTs:
alx,y) = 1

AN I mae 2o+ 7 o= Ae (2 +v?)f20°
sin( 7ua) sin(wvb)
(mua)  (7vbh)

Jmua+vh)

rect|a. b] <= ab

cos(2mupx + 2mpy) <
]
2

—

[6(u + wy. v + vy) + 8(u — wy, v — vy)]

sin(2rugx + 27vgy) <

;% (81 + up. v + vy) — 8(u — g, v — v)]

" Assumes that functions have been extended by zero padding.

TABLE 4.1

(continited)
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e The FFT algorithm developed in this section
IS based on the so-called successive
doubling method. For notational convenience
we express Eqg. (4.2-5) in the form

F ) = > OO,

Where W, =e 17"V
And M Is assumed to be of the form
M =2" or M =2K



e Substitution of Eqg. (4.6-38) into Eqg. (4.6-35)
yields

2K-1

F(u)_—Zf(x)W

1] 14
2{ Z f (2x)W ) 4 = Z f (2x +1)W”(2X+1)}

e Using w2 =wX

11 1 K-1 1 K-1
x=0

x=0



. . K-1
e Defining ()= % S 20w
x=0
l K-1
and Fos () =3 T (2x+ W
x=0

F (U) — %[Feven (U) + |:odd (U)qul)é ]

Because W™ =w: and Wau' =-Way,

Fu+K)= %[Feven (U) = Fog (U)W ]




e Continuing this argument for any positive
iInteger value of n leads to recursive
expressions for the number of multiplications
and additions required to implement the FFT:

m(n) =2m(n-1)+ 2", n>1
and

a(n)=2a(n-1)+2", n>1



e The computational advantage of the FFT
over a direct implementation of the 1-D DFT
Is defined as

M ° M

C(M)= =
(M) Mlog,M log, M

e Because It Is assumed that M =2" | we can
express Eg. (4.6-49) in terms of n:
C(n) = 2
n



2400 ——————— T

1800 +

C(n) 1200

600 |-

5 9 10 11 12

13 14

FIGURE 4.42
Computational
advantage of the
FFT over a direct
implementation
of the 1-D DFT.
Note that the
advantage
increases rapidly
as a function of a.
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All the filters discussed in this chapter are specified
In equation form.

In order to use the filters, we simply sample the
equation for the desired values of (u,v). This process
results in the filter function H(u,v).

In all our examples, this function was multiplied by
the DFT of the input image, and the inverse DFT
was computed.

All forward and inverse Fourier transforms in this
chapter were computed with an FFT algorithm.



e The approach to filtering discussed in this chapter is focused
strictly on fundamentals, the focus being specifically to explain
the effects of filtering in the frequency domain as clearly as
possible.

e \We know of no better way to do that than to treat filtering the way
we did here. One can view this development as the basis for
"prototyping" a filter. In other words, given a problem for which
we want to find a filter, the frequency domain approach is an
ideal tool for experimenting, quickly and with full control over filter
parameters.

e Once a filter for a specific application has been found, it often is
of interest to implement the filter directly in the spatial domain,
using firmware and/or hardware.



