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Image Processing

Chapter 3: Intensity
Transformation and Spatial
Filtering
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Image Enhancement

* Enhancement techniques: to process an 1image so that the
result 1s more suitable than the original image for a specific
application.

* Specific: techniques are very much problem oriented

— A technique that is useful for X-ray images might not be the best for
pictures transmitted from a space probe.

* Enhancement approaches:
1. Spatial domain
2. Frequency domain
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Basics

e Spatial domain: collection of pixels forming an image

e Spatial domain techniques are techniques that operate directly
on pixels

* Frequency domain techniques are based on modifying the
Fourier transform of an image
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Spatial domain: background

» Spatial domain processing: procedures that operate directly on
the pixels of the input image to generate the pixel values of

processed (output) image.
© gxY)=TH(X,y)]
— f(x,y): input image
— g(x,y): processed image
— T: an operator defined over some neighborhood of (x,y)

\I(\I \l

Univer

(..

> §
|

*a



Spatial domain: background

* Neighborhood around (x,y): usually a square or rectangular
subimage area centered at (x,y).

« Center of subimage is moved pixel by pixel. At each location
(x,y) the operator T 1s applied to find the value of g(x.,y).

.

Input (1) T Output (g)
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Spatial domain: background

S

Simplest form of T (the operator): the neighborhood 1s 1x1.
g(x,y) only depends of value of f at (x,y).
T: a gray-level transformation (mapping)

This type of processing 1s called point processing

i o

Input (f)

McMaster

T Output (g)



s=T(r)

Spatial domain: Point Processing

r

S

r: gray-level at (Xx,y) in original image f(x,y)
s: gray-level at (X,y) 1n processed 1image g(X,y)

T 1s called gray-level transformation or mapping

Input
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Spatial domain: Point Processing

The relation s=T(r) can be shown as a curve

Example: effect of the transform shown below is that an image with higher
contrast than the original image

How: the gray levels below m are darkened and the levels above m are
brightened .

s=T(r)

Contrast stretching m

m
Dark Light
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Spatial domain: Point Processing

Contrast stretching
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Spatial domain: Point Processing

« Limiting case: produces a binary image (two level) from the
input image

>
T Dark M x
Thresholding
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Spatial domain: Point Processing

Contrast stretching
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Gray-level transforms

FIGURE 3.3 Some L—-1 |
basic gray-level
transformation
functions used for Negative
image
enhancement. nth root
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Image Negative

 Suited for enhancing white
detail embedded in dark regions

e Has applications in medical
Imaging
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FIGURE 3.4

(a) Original
digital
mammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)
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Log Transformation

s =clog(l+7)

* Log transformation: maps a narrow range of low gray-level
values in the input image into a wider range of output levels.

» The opposite 1s true for higher values of input levels

* Expand the values of dark pixels in an image while
compressing the higher-level values
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Log Transformation

* Log transformation has the important property of compressing the
dynamic range of images with large variations in pixel values

e Compression of dynamic range: Sometimes the dynamic range exceeds
capability of the display device. An effective way to compress the
dynamic range of pixel values is

s =clog(l1+r)

« Example: range=[0, 2.5x10°] ——~ [0, 6.4]
choose ¢=255/6.4
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FIGURE 3.5
(a) Fourier
spectrum.
(b) Result of

applying the log

transformation
given in

Eq. (3.2-2) with
c =1
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Power-law transtformation

s=cr’
If y <1: transformation maps a narrow range of dark input
values into a wider range of output values
If vy >1:0pposite of the above effect

Many devices used for image capture, printing and display
respond according to a power low.

The process used to correct this power-low response
phenomena 1s called gamma correction.

Exp: CRT devices, intensity to voltage relation 1s a power
function with y=1.8 to 2.5

\I(\I Nu

— The output of CRT is a darker image y
To correct we pre-process the image with s = ¢r”’
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3L/4

Ly

Output gray level, s

L/4
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y.= 0.04
y = 0.10
y = 0.20
y = 040
y = 0.67
y=1 ]
y=15
y=25

y =350 7]

y = 10.0

/ y = 25.0
1 | | J
L/4 L/2 3L/4 L—-1

Input gray level, r

Power-law transformation

FIGURE 3.6 Plots
of the equation

s = cr’ for
various values of
y(c = Tlinall
cases).
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Contrast stretching

« Low contrast images occur often due to poor or non-uniform lighting
conditions or due to non-linearity or small dynamic range of the imaging
Sensor.

ab

cd

FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.
(Original image
courtesy of

Dr. Roger Heady,
Research School
of Biological
Sciences.
Australian
National
University,
Canberra,

B Australia.)

 The transformation looks like: s seal B

- Lp- 7(r) i

Ouput gray level,

ar, O<sr=r

. i

(r1,51)

s=1Br—-n)+s, VST <, T T

Input gray level.r

J\o

y(r-r)+s,, rn=sr=sL-1

* The locations of points (r,,s,) and (1,, s, )

control the shape of the transformation

function.
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Contrast stretching

e Special cases:
— if r, = s, & r, = s,, transformation 1s linear (no change)

—ifr, =1, 5, =0 & s, = L-1, thresholding transformation
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Intensity-level Slicing

« Highlights a specific range of gray-levels in an image

2 basic methods:

1. Display a high value for all
gray levels 1n the range of
interest and a low value for all
other

2. Brighten the desired range of
gray levels but preserve the
gray level tonalities
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Bit plane slicing

One 8-bit pixel value —

Bitplane7 ——m——
(most significant)

S = N WA O\

Bit plane 0
(least significant)
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Bit plane slicing
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FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 X 1192 pixels. (b) through (i) Bit planes 1 through 8,

with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.
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Bit plane slicing

« Higher order bit planes of an image carry a significant amount
of visually relevant details

» Lower order planes contribute more to fine (often
imperceptible) details
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Histogram Processing

Histogram of a digital image 1s a discrete function that 1s
formed by counting the number of pixels in the image
that have a certain gray level.

Often the histogram i1s normalized by dividing by the
total number of pixels in the image

In an 1mage with gray levels in [0,L-1] normalized
histogram 1s given by p(r, )= n,/n where:

— 1, 1s the k th gray level, k=0, 1, 2, ..., L-1

— n, number of pixels in the image with gray level r,

— n total number of pixels in the image

Loosely speaking, p(r,) gives an estimate of the probability of
occurrence of gray level 1,
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Histogram Processing

* Problem: an image with gray levels between 0 and 7 is given
below. Find the histogram of the image

n,
116 1l 212 p.(r)= —
13|33
46 |40
16 |4 |7
\ Ic \I aster
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Histogram equalization

« Histogram provides a global ik
description of the appearance of an 1

W
— In a dark image, histogram is centered in | mhh.. ,k uﬂ!)“li h .
the dark side of gray scale

— In a bright image, the histogram is biased
toward the high side of gray levels

uuuuuuuuuuuuuuuuuuuuu

* An 1mage whose pixels occupy the . \
entire range of possible gray levels and

1s uniformly distributed will appear as
high-contrast.
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Histogram equalization

« Goal: find a transform s=T(r) I
such that the transformed image I ]
has a flat (equalized) histogram i -

2 ‘ T T I I
\_ Histogram of light image
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Histogram of low-contrast image

| | | |
I I I
Histogram of high-contrast image
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Local histogram processing

* Global histogram processing: pixels are modified by a
transformation function based on the gray-level content of an
entire 1mage

« Sometimes we want to enhance the details over a small area

* Solution: transformation should be based on gray-level
distribution in the neighborhood of every pixel

* Local histogram processing:

— At each location the histogram of the points in the neighborhood is
computed and a histogram equalization or histogram specification
transformation function 1s obtained

— The gray level of the pixel centered in the neighborhood is mapped

— The center of the neighborhood 1s moved the next pixel and the
procedure repeated

McMaster
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Local histogram processing

abc

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local
histogram equalization applied to (a), using a neighborhood of size 3 X 3.
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[Local Enhancement

* Mean of gray levels in an image: a measure of darkness,
brightness of the image

* Variance of gray levels in an image: a measure of average
contrast

* Local mean and variance are used as the basis for making

changes that depend on image characteristics in a predefined
region about each pixel

mg = %S,p( )

0 sy = ;( —mey)2p(rS,t)
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LLocal Enhancement

bl

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130X.
(b) Result of global histogram equalization. (¢) Image enhanced using local histogram
statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological
Sciences, University of Oregon, Eugene.)
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Spatial domain filtering

» Larger neighborhood around (x,y): usually a square or rectangular subimage
area centered at (x,y).

» The center of the subimage 1s moved pixel by pixel. At each location (X,y)
the operator T is applied to find the value of g(x,y).

.

Input T Output
McMaster
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Spatial domain filtering

Based on the operator T:
* Spatial filtering

\

e Linear filters * Non-linear filters

l l

 Average filtering Smoothing __ * Median filters

* Weighted average/\v filters
filtering e Order-statistics

Sharpening
* High-boost filters ——— 1101 filters

e Derivative filters /

Linear filters can be implemented

| by masks but not non-linear filters
McMaster

University &8
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Spatial domain filtering

* Linear filtering: Result of filtering is a linear combination of the gray-levels
in the neighborhood of (x,y)

« Exp: g(x,y)=w(-1,-Df(x-1,y-1)+ w(-1,0)f(x-1,y)+ ..+w(0,0)f(x,y)+ ..
+w(1,0)f(x+1,y)+ w(l,D)f(x+1,y-1)

* One approach to find the processed image in this case is to use a mask
(window or filter)

* Mask: a small 2-D array. The values of the elements of the mask are the w’s

Input Output
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Spatial domain filtering

iimage origin

\ Filter fnasl

Image pixels —

w(-1,-1)

Image

w(0,~1)

w(l,=1) | w(1,0) | w1

fx=1,y—1) for—1,y+ 1) Filter coefficients

fey=1) fey+1)

fe+1y-1| fx+1y) |fc+1y+1)

Pixels of image
section under filter
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Correlation and Convolution

Correlation Convolution
y~ Origin f w ,— Origin  f w rotated 180°
(@) 000O10000O0 12328 00010000 82321 (i)
Y
(b) 00010000 00010000 (€))
12328 82321

L Starting position alignment

I — Zero padding EE—
1 1

(cg 00000001 0O0O0O0ODODODCOOO 000000O0O100000O0O0O0 (k)
12328 82321

(dd0O0OODODODODTOODODODOODOO 0000000O1T0O0D0O00O0O0O0O0 (D
12328 8§ 2321

L Position after one shift

e)o0o0o0o00D0O0D1TOODODODODODODO 00000001 00D0O0O0O0OO (m)
12328 82321
L Position after four shifts

fH) 0OOODODODODTOODODODOOOO 00000001T000000O0O0 (n)
12328 8§ 2321
Final position —
Full correlation result Full convolution result
(g) 000823210000 000123280000 (0)
Cropped correlation result Cropped convolution result
(h) 08232100 01232800 (p)

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that
correlation and convolution are functions of displacement.
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Correlation and Convolution

,— Origin f(x, y)
0O 0 0 0 0
0O 0 0 0 0
00100
O 0 0 0 0
0O 0 0 0 0
(a)
_Y_IEEI‘“ position for w
“ 2 3:u1i<»
4 5 6,0 0 0
7.8 910 0 0
O 0 0 0 0 0
OO0 0010
O 0 0 0 0 0
O 0 0 O 0 0
O 0 0 0 0 0
O 0 0 0 0 0
(©)
rRotatedw
ﬁ_g_ﬂ1>1iu
6 5 40 0 0
:E_%_U""”
O 0 0 0 0 0
OO0 0010
O 0 0 0 0 0
0O 0 0 0 0 0
O 0 0 0 0 0
O 0 0 O 0 0
®

0

Padded f

(b)

0O 0 0 9 8
00 0 6 5
0O 0 0 3 2

0O 0 0 0 0

(@)

00012
000 45
0O 0 0 7 8

Cropped correlation result
0O 0 0 0 0

0O 9 8 7 0
06 5 4 0
O3 2 1 0

O 0 0 0O 0O

(e)
Cropped convolution result

0O 0 0 0 0

~ &= =
W
[=))

(h)
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Spatial domain filtering

Example: each pixel in the processed image 1s the average of

the gray levels of pixels to the right, left, top, bottom and itself.

0 | 1/5/0
1/5\1/5 | 1/5
0 |1/5]0

S

This spatial domain processing can be implemented by the
following mask:

o

Input

McMaster
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Smoothing Filters

e Smoothing filters: used for blurring and noise reduction.

e Blurring: used in preprocessing steps such as removing small
details from an 1mage before object extraction, bridging small

gaps 1n lines and curves
e Smoothing:
— Averaging (weighted averaging)
— Median filtering

LIIVCIOILY
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Smoothing Filters

* Averaging: By replacing the value of every pixel in an image
by the average of the gray levels in the neighborhood, we get
an 1mage with reduced sharp transitions.

e Because random noise typically consists of sharp transitions
in gray-levels, averaging can be used in noise reduction

* Edges in an image also have sharp transitions
» Average filtering has the side effect of blurring edges

N=1
—
(=)}
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Smoothing Filters

HIGURE 3.33 (a) Original image, of size 500 X 500 pixels. (b)) Results of smoothing g b
with square averaging filter masks of szes m = 3,5,9, 13, and 35, respectively. The black ¢ ¢
squares at the top are of sizes 3,5,9, 15,25, 35,43, and 55 pixels respectively; their borders ¢ f
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; e large letter at the top is 60 points. The vertical bars are 5 pixels

wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25

pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100%

black in increments of 20%. The background of the image is 10§/u black. The noisy
rectangles are of size 30 X 120 pixels.
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Median Filtering

e Median filter belongs to a group of filters called order-statistic
filters

e These filters are non-linear

* The output of the filter is obtained by ordering the values of
pixels in the neighborhood and performing some operation on
the ranked data (e.g., min, max, median)

\k\l \[énlj
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Median Filtering

e Median filters are particularly effective in the presence of
impulse noise (salt and pepper noise)

« Unlike average filtering, median filtering does not blur edges
and other sharp details.

« Example: Consider the example of filtering the sequence
below using a 3-pt median filter:

16 14 15 12 2 13 15 52 51 50 49
* The output of the median filter 1s:
15 14 12 12 13 15 51 51 50

* Note that the impulse noise 1s removed while the edge 1s
preserved.
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Median filtering

 Principal function of median filtering 1s to force points with
distinct intensities to be more like their neighbors, eliminating
intensity spikes that appear isolated in the neighborhood

« Advantages:
— Removes impulsive noise
— Preserves edges

« Disadvantages:

— performance poor when # of noise pixels in the window is
greater than 1/2 # in the window

— performs poorly with Gaussian noise

\k\] \g S
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Median Filtering

allbllc

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3 X 3 averaging mask. (c) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)
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Sharpening filters

e Objective: highlight fine detail in an 1mage or to enhance
detail that has been blurred

« Sharpening can be achieved by spatial differentiation

» Since images are digital we should define digital
differentiation operators.

» First and second order derivatives are commonly used for
sharpening.

* We consider 1-D case first and then expand the results to
1mages.

%=f<x+1)—f<x>

8f

=)+ S =D =27 ()
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Sharpening filters

e Comparing first and second order derivatives:

1. First-order derivatives generally produce thicker edges in an
image

2. Second order derivatives have a stronger response to fine
details such as thin lines and isolated points

3. Second order derivates produce a double response at step
changes in gray level

« For image enhancement (sharpening) second order derivative
has more applications because of the ability to enhance fine
details

\k\] \IU |
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Laplacian

 How to obtain 2-D second order derivative for image
enhancement and find a mask corresponding to it?

 We would like our filter to be 1sotropic: response of the filter
1s independent of the direction of the discontinuity in the

1mage
« Simplest 1sotropic second order derivative is the Laplacian:
oO°f Of
Vf =
4 ox’ * 8y2

Vif=fx+Ly)+ f(x=-Ly)+ f(x,y+D+ f(x,y =D =4f(x,»)
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Laplacian

0 1 0 1 1 1
1 —4 1 1 -8 1
0 1 0 1 1 1
0 -1 0 -1 -1 -1
-1 4 -1 -1 8 -1
0 -1 0 -1 -1 -1

ab
©al

FIGURE 3.37

(a) Filter mask used
to implement

Eq. (3.6-6).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal terms.

(c) and (d) Two
other implementa-
tions of the
Laplacian found
frequently in
practice.
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Laplacian

« Laplacian 1s a derivative operator: its use highlights
discontinuities in an image and de-emphasizes regions with
slowly varying gray levels.

e All the background are removed

e Background can be recovered simply by adding original and
Laplacian images.

f(x, )=V’ f(x,y) center coefficient negative

g(x,y) = { 7, )+ V2 f(x,y) center coefficient positive
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Laplacian
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FIGURE 3.38

(a) Blurred image
of the North Pole
of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA.)
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Laplacian
* Instead of computing the Laplacian filtered image and then
subtracting it from the original image we can combine the two
operations.
G(x,y)= f(x,y)-[f(x+1,y)+ f(x-1,y)+ f(x,y+1)+ f(x,y-1)]+ 4f(x,y)
= 5f(x,y)-[f(x+1,y)+ f(x-1,y)+ f(x,y+1)+ f(x,y-1)]

McMaster
University 55
¥ 56



McMaster

University W

[=Po g
(¢Mie}

Laplacian

FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning
electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b).
respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)
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Unsharp masking & High-boost filtering
A method for sharpening an image 1s to subtract a blurred
version of the image from the image 1itself to obtain a mask.
Add the mask back to the original image
This method 1s called unsharp masking

gmask(xay) — f((]j',y) - f(xay)

9(z,y) = f(z,y) + k-gmask (@, y)

When k>1, the process 1s called high-boost filtering.



Unsharp masking & High-boost filtering

Original signal

Blurred signal

Unsharp mask

AN
N/
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Unsharp masking & High-boost filtering

DIP-XE
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Derivative filters

« Image 1s a 2-D signal: when we are talking about derivative
we should specify the direction.

» First order derivates are implemented using magnitude of the
gradient

e (@radient: of ]
ax
Jf
ay

\Z

-1/2

rory (oY
vy - (a) +(ay)
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VA= A4V,

dy
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Derivative filters

z1
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z3
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Derivative filters

V| =V, 14|V, 7]

z1 |22 || z3
fozz7+28+z9—(zl+zz+z3) z4 || z5 || z6
Vyfzz3+z6+29—(zl+z4+z7) Zz7 | z8 || 29

1 1114 100 |1 X
0 [0 |0 -1 10 |1
1 |11 -1 0 1

| .LI@“A\_I;}:S{CI’
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Derivative filters

V| =V, 14|V, 7]

V fl= Z7+2ZS+Z9—(Z1+222+Z3)

V. fl= Z3+2Z6+Z9—(Zl+224+27)

z1

72

z3

74

Z5

Z6

yAl

z8

79

1 (-2 |1 -1 |0 1

0 0 0 2 |0 2

1 2 |1 -1 |0 1
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v

64



Derivative filters

z 2 zZ
Z 35 3
Z 23 2
-1 0 0 -1
0 1 1 0
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

[l\"l(‘l\”IZlSpt’nll;
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Derivative filters

> -

McMaster
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Problem

* A 4x4 1mage 1s given as follow.

1) The image is transformed using the point transform shown.

Find the pixel values of the output image.

17{64 | 128 | 128 250 —
15{63 | 132 | 133
1160 | 142 | 140

1160 | 142 | 138 20 130

McMaster
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Problem

* A 4x4 1mage 1s given as follow.

1) The image is transformed using the point transform shown.
Find the pixel values of the output image.

2) What 1s the 7-th bit plane of this image

17|64 | 128 | 128 250

1563 (132|133

11 60 | 142 | 140 10 T

1160 | 142 | 138 14 130
| .LI@“A\_I;}:S{CI’
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Problem

* A 4x4 1mage 1s given as follow.

1) Suppose that we want to process this image by replacing each
pixel by the difference between the pixels to the top and
bottom. Give a 3x1 mask that performs this.

2) Apply the mask to the second row of the image

17|64 | 128 | 128

15{63 | 132 | 133
1160 | 142 | 140

1160 | 142 | 138
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