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e Restoration attempts to reconstruct or
recover an image that has been degraded by
using a priori knowledge of the degradation
phenomenon.
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e If H Is a linear, position-invariant process,
then the degraded image is given in the
spatial domain by

g(x,y) =h(x,y)*F(x,y) +n(X,y)

e Where h(X,y) Is the spatial representation of
the degradation function.

e Write the model in an equivalent frequency
domain representation.

G(u,v)=H(u,v)F(u,v)+ N(u,v)
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FIGURE 5.1 A
model of the
image
degradation/
restoration
process.
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e Parameters: define the spatial characteristics
of noise, and whether the noise is correlated
with the image.

e Frequency properties: refer to the frequency
content of noise In the Fourier sense.

e When the Fourier spectrum of noise Is
constant, the noise usually Is called white
noise.
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Gaussian noise

e The PDF of a Gaussian random variable, z, Is
given by

1

p(Z) — \/EJ

e Z represents gray level,
e 12 IS the mean of average value of z;
e O IS Its standard deviation.

e—(z—,u)2/202




Rayleigh noise

e The PDF of Rayleigh noise is given by

°(2) %(z —a)e =/ for z>a
= 4
0 for z<a

e The mean and variance of this density are
given by
u=a++abl4

e and
2 _ b(4_7f)
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Erlang(Gamma) noise

e The PDF of Erlang noise is given by

( ~b_b-1
a z _az

e
p(z) =4 (b -1)!
0 for z<0

for z>0

e The mean and variance of this density are
given by

e and



Exponential noise

e The PDF of exponential noise Is given by

ae ™™ for z>0
0 for z<0

p(z) =+

e The mean and variance of this density
function are

1
H=—
a
e and
o2 ==




Uniform noise

The PDF of uniform noise is given by
!

0(2) <b— If a<z<b
=<b—-a
0

otherwise
The mean of this density function is given by

a+b
2

IL[:

And its variance by
,  (b- a)°
12

O



Impulse (salt-and-pepper) i
noise

e The PDF of (bipolar) impulse noise is given
by
P, for z=a

p(z) =P, for z=Db
0 otherwise
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FIGURE 5.2 Some important probability density functions.



FIGURE 5.3 'lest
pattern used to
illustrate the
characteristics of
the noise PDFs
shown in Fig. 5.2,
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FIGURE 5.4 Images and histograms resulting from adding Gaussian, Ravleigh, and gamma noise to the image
in Fig. 5.3.
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FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform. and impulse
noise to the image in Fig. 5.3.
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e Periodic noise in an image irises typically
from electrical or electromechanical
Interference during image acquisition.

e Periodic noise can be reduced significantly
via frequency domain filtering.
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FIGURE 5.5

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum
(each pair of
conjugate
impulses
corresponds to
One sine wave).
(Original image
courtesy of
NASA.)
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e The parameters of periodic noise typically are
estimated by inspection of the Fourier
spectrum of the image.

e The simplest way to use the data from the
Image strips Is for calculating the mean and
variance of the gray levels.



e Consider a strip (subimage) denoted by S.
We can use the following sample
approximations from basic statistics:

:u:zzip(zi)

ZiES

and

o’ = Z(Zi _U)2 pP(z;)
Z;€S
where the zI's are the gray-level values of the
pixels in S, and p(z,) are the corresponding

normalized histogram values.
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FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Ravleigh,
and (c) the uniform noisy images in Fig. 5.4
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e \When the only degradation present in an
Image IS noise

g(x,y) = t(x,y)+n(xy)
and

G(u,v) =F(u,v)+ N(u,v)




e Mean Filters

e Order-Statistics Filters

o Adaptive Filters




Arithmetic mean filter

e Let S,, represent the set of coordinates in a
rectangular subimage window of size m*n,
centered at point (x,y).

e The arithmetic mean filtering process computes
the average value of the corrupted image g(x,y)
In the area defined by Sxy.

e The value of the restored image f at any point
(X,y) Is simply the arithmetic mean computed
using the pixels in the region defined by S, . In
other words,



Geometric mean filter

e An image restored using a geometric mean
filter Is given by the expression

1

mn

~

t(x,y)= HQ(S )

(S t)eS,,




Harmonic mean filter

e The harmonic mean filtering operation is
given by the expression
- mn
f (X1 y) T 1

2

ses,, 9(S:1)




Contraharmonic mean filter

e The contraharmonic mean filtering operation
yields a restored image based on the
expression:

>.a(s,1)%"

(s,t)eS,,

2.9(s,1)°

(S,t)eSyy

f(Xy)=

where Q Is called the order of the filter.
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FIGURE 5.7 (a)
X-ray image.

(b) Image
corrupted by
additive Gaussian
noise. (¢) Result
of filtering with
an arithmetic
mean filter of size
3 X 3.(d) Result
of filtering with a
ceometric mean
filter of the same
size. (Original
image courtesy of
Mr. Joseph E.
Pascente, Lixi,
Inc.)
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FIGURE 5.8

(a) Image
corrupted by
pepper noise with
a probability of
(.1.(b) Image
corrupted by salt
noise with the
same probability,
(c) Result of
filtering (a) with a
RI
contraharmonic
filter of order 1.5.
(d) Result of
filtering (b) with
0 = -15.
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e Mean Filters

e Order-Statistics Filters

o Adaptive Filters




Median filter

e Replaces the value of a pixel by the median
of the gray levels in the neighborhood of that
pixel:

f (x,y) = median{g(s,t)}

(s,t)eS,y



e
cd

FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities
P, =p =01
(b) Result of one
pass with a
median filter of
size 3 X 3.

(c) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.




Max and min filters

e Using the 100th percentile results in the so-
called max filter, given by

f(x,y) = max{g(s.t)}

(s,t)eSyy

e The Oth percentile filter is the min filter:

f(x,y) =min{g(s,t)}

(s,t)eSyy
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FIGURE 5.11
(a) Result of
filtering

Fig. 5.8(a) with a
max filter of size
3 X 3.(b) Result
of filtering 5.8(b)
with a min filter
of the same size.



Midpoint filter

e The midpoint filter simply computes the
midpoint between the maximum and
minimum values In the area encompassed by
the filter:

f(x,y) = E[ max {g(s,t)}+ min {g(s, t)}}

(s,t)eS,y (s,t)eSyy



Alpha-trimmed mean filter

Suppose that we delete the d/2 lowest and the d/2
highest gray-level values of g(s,t) in the neighborhood
S,y-Let g,(s,t) represent the remaining mn-d pixels. A
fllter formed by averaging these remaining pixels is
called an alpha- trlmmed mean filter:

f(,y)=——= > 9,(s:1)
mn —d (Sés
Where the value of d can range from O to mn-1.

When d=0, the alpha-trimmed filter reduces to the
arithmetic mean filter.

If we choose d=mn-1, the filter becomes a median filter.
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FIGURE 5.12 (a) age D]T[Eb}f acl;:lii'-.re uniform noise. (b) Image additionally cor-
rupted by additive salt-and-pepper noise. Image in (b) filtered with a 5 X 5:(c¢) arithmetic
mean [lter; (d) geometric mean filter: (e) median filter; and () alpha-trimmed mean fil-
ter withd = 5.
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e Two simple adaptive filters whose behavior
changes based on statistical characteristics
of the image inside the filter region defined by
the m*n rectangular window S,



Adaptive, local noise reduction
filter

e The response of the filter at any point(x,y) on
which the region is centered is to be based
on four quantities:

g(x,y), the value of the noisy image at (x,y);

G,f , the variance of the noise corrupting f(x,y) to
form g(x,y);
m, , the local mean of the pixels in S, ;

o; , the local variance of the pixels in S,,.



e \We want the behavior of the filter to be as follows:

If a,f IS zero, the filter should return simply the value of g(x,
y). This is the trivial, zero-noise case in wnich g(x, v) Is
equal to f(x, y).

If the local variance is high relative too, , the filter should
return a value close to g(x,y). A nigh local variance
typically is associated with edges, and these should be
preserved.

If the two variances are equal, we want the filter to return
the arithmetic mean value of the pixels in Sxy- This
condition occurs when the local area has the same
properties as the overall image, and local noise is to be
reduced simply by averaging.



e An adaptive expression for obtaining f(x,y)
based on these assumptions may be written
as

2

f(x,y) = 9(x y)——Z[g(x,y)-m,]

o,
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FIGURE 5.13

(a) Image
corrupted by
additive Gaussian
noise of zero
mean and
variance 1000.
(b) Result of
arithmetic mean
filtering.

(c) Result of
geometric mean
filtering.

(d) Result of

adaptive noise
reduction
filtering. All filters
were 0f size

7 x 7.




<“min

Zlnil’.\'

<Smed

z.\'y o

Al
*S max

Level A:

Level B:

- median of gray levels in S

arls NP e000
- minimum gray level value in S, :::0
" : : | X J
maximum gray level value in S, °

Xy

gray level at coordinates (x, y)
maximum allowed size of §,,.

Al = Zmed — <min

Al = Imed — <max

If A1 > 0OAND A2 < 0, Gotolevel B
Else increase the window size

[f window size = §,,,, repeat level A
Else output z,eq-

[il = Z.l‘y = Zmin

B2'= 24y = Zrax

If Bl > 0AND B2 < 0, output z,,
Else output z,,.4.
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FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities B, = B, = 0.25. (b) Result of fil-
tering with a7 X 7 median filter. (¢) Result of adaptive median filtering with Sy, = 7.
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e Bandreject filters remove or attenuate a band of
frequencies about the origin of the Fourier
transform. An ideal bandreject filter is given by
the expressior]

1 if D(u,v)<D, —%

H(u,v) =<0 if DO—%SD(U,V)SDNL%

1 if D(u,v)>D0+%

e Where D(u,v) Is the distance from the origin of
the centered frequency rectangle, W is the width
of the band, and DO is its radial center.



e A Butterworth bandreject filter of order n is
given by the expression:

1

H(u,v) =
1+

H(u,v)=1-¢

D(u,v)W

' D*(u,v)-Dg
e And a Gaussian bandreject filter is given by

2

1| D?(u,v)-D¢
D(u,v)W

|

2N
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FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.
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FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(¢) Butterworth
bandreject filter
(white represents
1. (d) Result of
filtering. (Original
image courtesy of
NASA.)
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e The transfer function H,(u,v) of a bandpass
filter obtained from a corresponding
bandreject filter with transfer function H,,(u,v)
by using the equation

Hpp(U,v)=1-H,,(u,v)



FIGURE 5.17
Noise pattern of
the image in

Fig. 5.16(a)
obtained by
bandpass filtering.
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e The transfer function of an ideal notch reject
filter of radius DO, with centers at(u0O,v0) and,
by symmetry, at(-u0,-v0), Is

0 if D(u,v)<D, or D,(u,v)<D,
1 otherwise

H(u,v):{

where
D, (u,V) = [(u ~M/2-u,) +(v- N/2—v0)2]1/2
and
D,(u,v) = [(u—l\/l/2+u0)2 +(v— N/2+vo)2]1

/2



e The transfer function of a Butterworth notch
reject filter of order n is given by

H(u,v) = L

é :|n
1
Dl(U,V)DZ(U,V)

e A Gaussian notch reject filter has the form

1[D1(u,v)D2(u,v)}
2
Hu,v)=1-e 2 O
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FIGURE 5.18 Perspective plots of (a)

notch (reject) filters.

(b) Butterworth (of order 2), and (¢) Gauss
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e The Fourier transform of the interference
noise pattern is given by the expression

N(u, v) =H(u, v)G(u, v)

e The corresponding pattern in the spatial
domain is obtained from the expression

n(x,y) = I H(U,v)G(u, V)]

f(x, ¥) = g(X, ¥) - w(x, y)n(X, y)



e The local variance of f(x, y)at coordinates (x,y)
can be estimated from the samples as follows:

: 1
o’(X,y) = ZaiD(2b+] SZatZ[f (x+s,y+1)— f(x, y)]2

e Where f(x,vy) is the average value of f in the
neighborhood

—h)|

1
XY= Ga D@ D) Szaz flx+s,y+)



(2a + 1)1(2b 1) £ ZZ{[Q(HS y +1) = W(X, y)n(X+Ss,y +1)]

—w(x, Y)(x+s,y+]1-[T(x, y) —w(x, )7 (X )I¥
e TO mMinimize o*(x,y),we solve

o’ (X,y) =

0c°(x,y) _
OW(X, y)
for w(x,y). The result is

g(X, Y)_U(X, y) B g(X, y)ﬁ(x1 y)
772()(1 y) _772()(’ y)

w(X, y) =



FIGURE 5.19 (a) Satellite image of Florida and the Gulf of Mexico (note horizontal sen-
sor scan lines). (b) Spectrum of (a). (c) Notch pass filter shown superimposed on (b).
id) Inverse Fourier transform of filtered image. showing noise pattern in the spatial do-
main. (&) Result of notch reject filtering. {Original image courtesy of NOAAL)
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FIGURE 5.20

(a) Image of the
Martian terrain
taken by
Mariner 6.

(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)




FIGURE 5.21 Fourier spectrum {without shifting) of the image shown in Fig. 5.20(a).
(Courtesy of NASA.)
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FIGURE 5.22 (a) Fourier spectrum of N {u, v). and (b) corresponding noise interference

pattern n(.x.

v). (Courtesy of NASA.)
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FIGURE 5.23 Processed image. (Courtesy of NASA.)
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e The Input-output relationship is expressed as
g(x,y) = H[f (x, y)]+7(x. y)

n(x,y)=0

e HIs linear If

H{af, (x, y) +bf, (x, y)| = aH[ f,(x, y)|+ bH[f, (x, )]



e An operator having the Input-output
relationship  g(x,y)=H[f(x,y)] IS said to be
position invariant if

H[f(x-ay-b)]=g(x—ay-b)

fxy)=[_ | flaps(x-ay-pdadp



g(xY)=[ [ flaph(xa.y,Adads

e Where h(x.a,y,B)=H[5(x-a,y-B)]
e If H Is position invariant

then Hls(x-a,y-B)]=h(x-a,y - p)

g, y)=| [ flaph(x-a,y-p)adp

This expression is called the convolution integral.
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e Estimation by Image Observation

o Estimation by Experimentation

o Estimation by Modeling




e J.(x,y) :The observed subimage,
e f.(x,y) :The constructed subimage;




o Estimation by Image Observation

e Estimation by Experimentation

o Estimation by Modeling




G(u,v)

H(u,v) =

e G(u,v): The Fourier transform of the observed
Image,;

e A: a constant describing the strength of the
Impulse;



o Estimation by Image Observation

o Estimation by Experimentation

e Estimation by Modeling




e A degradation model proposed by Hufnagel
and Stanley Is based on the physical
characteristics of atmospheric turbulence.
This model has a familiar form:

H (u,v) _ e—k(U2+V2)5/6



e Suppose that an Image components of
motion in the x- and y-directions, respectively.
If T I1s the duration of the exposure, it follows

that T
g(x,Y) = | Fx=x,(),y - Yo ()]t
G(u,v)=F (U’V)J: e—jZﬂ[UXo (t)+vyo (t)]dt

T .
H(u,v) = J;) e—JZW[UXo(t)Wyo(t)]dt

G(u,v) =H(u,v)F(u,v)
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FIGURE 5.24
Degradation
estimation by
impulse
characterization.
(a) An impulse of
light (shown
magnified).

(b) Imaged
(degraded)
impulse.
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FIGURE 5.25
Illustration of the
atmospheric
turbulence model.
(a) Negligible
turbulence.

(b) Severe
turbulence,

k = 00025,

(c) Mild
turbulence,

k = 0.001.

(d) Low
turbulence,

k= 0.00025.
(Original image
courtesy of
NASA )




e At arate given by x,(t)=at/T , ¥,(t)=0,

H(u,v) = Lsin(yzua)e‘j””"j1
aua

e With the motion given by vy, () =bt/T |, then the
degradation function becomes

T .
H(u,v) = —aivh) sin[zz(ua + vb)]

e—jﬂ(ua+vb)
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FIGURE 5.26 (a) Original image. (b) Result of blurring using the function in Eq. (3.6-11)
witha=5b=0landT = 1.
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o LA G(u,v)=H(u,Vv)F(u,v)+ N(u,v)

N (u, V)
H(u,v)

F(u,v) = F(u,v) +
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FIGURE 5.27
Restoring

Fig. 5.25(b) with
Eq. (5.7-1).

(a) Result of
using the full
filter. (b) Result
with H cut off
outside a radius of
40 (c) outside a
radius of 70; and
(d) outside a
radius of 83,
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e Based on these conditions, the minimum of
the error function is given in the frequency
domain by the expression



H™(u,v)S, (u,v)
S (u,v)H (u,v)\2 +S, (u,V)

F(u,v) =

}G(u,v)

= H (uv) G(u,v)
Huv)|" +S, (uv)/S, (u,v)

_| 1 \H(u,v)\z G(u,v)
HUV) [H V)" +S,u,v)/S, Uu,v)

H(u,v) = degradation function

H*(u,v) = complex conjugate of H (u, v)

H(u, 'U)|2 = H*(u,v)H (u,v)

S,(u,v) = |N(u, ’U)‘E = power spectrum of the noise [see Eq. (4.2-20)]
Si(u, v) = |F(u, v)|’

= power spectrum of the undegraded image.
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FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (¢) Wiener filter result.
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FIGURE 5.29 (a) Image corrupted by motion blur and additive noise. (b) Resull of inverse filtering, (c) Result
of Wiener fillering. {dj-1) Same sequence, but with noise variance ong order of magnitude less (g)-(i) Same
sequence, bul noise variance reduced by five orders of magnitude from {a). Note in (h) how the deblurred
image i quite visible through a “curtain™ of nojse.
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e The Wiener filter presents an additional
difficulty:

The power spectra of the undergraded image
and noise must be known.



g=Hf +n

e T0 find the minimum of a criterion function, C,
defined as

M-1IN-1

c=YY Vit yf

x=0 y=0

Subject to the constraint

o[ =l



e The frequency domain solution to this
optimization problem is given by the
expression

If(u,v)={ Hz*(u,v) 2}G(u,v)
H(u,v)|" +7|P(u,v)

e P(u,v) is the Fourier transform of the function

0 -1 O
p(x,y)=1-1 4 -1
0 -1 O




e Define a “residual”’ vector r as
r=g-Hf

p(r)=r"r=|r|’

Il =[l7|" +




e |In order to use this algorithm, we need the
quantities |r|* and |z’
R(u,v) = G(u,v)—H(u,v)F(u,v)



g

.(b).and (c¢) with the Wiener filterin
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FIGURE 5.30 Results of

respectively.

i),

and (

29(c), (1),

0s. 3

results in Fi
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FIGURE 5.31

(a) Iteratively
determined
constrained least
squares
restoration of
Fig. 5.16(b), using
correct noise
parameters.

(b} Result
obtained with
Wrong noise
paramelers.
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e A spatial transformation: which defines the
“rearrangement” of pixels on the image plane;

e Gray-level interpolation: which deals with the
assignment of gray levels to pixels in the
spatially transformed image.



Spatial Transformations

X'=T(X,Y)
y'=5(X,Y)

FIGURE 5.32
/?{\ Corresponding
Liepoints in two
"+ ‘-

image segments.




r(x,y) =c,X+c¢,y+C,xy +c¢,
S(X,Y) =CX+Csy+C,Xy+Cg

and

X'=C/X+C,Y+C,Xy+C,
y'=C.X+CsYy +C, XYy +Cq



Gray-Level Interpolation

Spatial transformation

r/_\xx |

{_r" }I] / \ LI_T'I. _'!.-'rjl
: .
\ / Nearest neighbor to (x', v)

o sl
\_//.—-""

s Grav-level assienment x' oy
flx, ) ) £ g(x'y)

FIGURE 5.33 Gray-level interpolation based on the nearest neighbor concept.
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FIGURE 5.34 (a) Image showing tiepoints. (b) Tiepoints after geometric distortion.
ic) Geometrically distorted image, using nearest neighbor interpolation. (d) Restored
result. (e} Image distorted using bilinear interpolation. (f) Restored image.
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FIGURE 5.35 (a) An image before geometric distortion. (b} Image geometrically dis-

torted using the same parameters as in Fig. 5.34{e). (c) Difference between (a) and (b).
(d) Geometrically restored image.




