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Image Restoration

e Similar to image enhancement, the ultimate goal of restoration
techniques 1s to improve an image

e Restoration: a process that attempts to reconstruct or recover a
degraded 1image by using some a priori knowledge of the
degradation phenomenon.

e Technique: model the degradation -> apply the inverse
process to recover the original image

* Enhancement technique are heuristic while restoration
techniques are mathematical
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Degradation Model

* Problem: given g(x,y) and H find an approximate of {(x,y).
« Some statistical knowledge of n(x,y) 1s available.

g(x,y)=h(x,y)* f(x,y)n(x,y)

FIGURE 5.1 A
model of the

Degradation

Restoration

f(x.y) function . f(x.¥) image
! - filter(s : - 5 .
H titer(s) degradation/
, restoration
Noise process.
n(x.y)
DEGRADATION RESTORATION
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Noise model
Principal sources of noise in digital images: during image
acquisition, during image transmission
Image acquisition: image sensor might produce noise because
of environmental conditions or quality of sensing elements
Image transmission: interference in the channel

Assumptions: noise 1s independent of spatial coordinates
(except for periodic noise) and independent of the image

Spatial description of noise: statistical behavior of the values
of the noise (PDF)

Most common PDFs found in 1image processing: Gaussian
noise, Rayleigh noise, Erlang (Gamma) noise, Exponential
noise, Uniform noise, Impulse noise
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Noise model
« Different PDFs provide useful tools for modeling a broad
range of noise corruption situations:

« Gaussian noise: due to factors such as electronic circuit noise,
sensor noise (due to poor 1llumination or high temperature)

« Rayleigh noise: model noise in range 1imaging
« Exponential and Gamma: laser imaging

e Impulse noise: found in quick transients (e.g., faulty
switches)
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Noise model

FIGURE 5.3 Test
pattern used to
illustrate the
characteristics of
the noise PDFs
shown in Fig. 5.2.
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Noise model

Gamma

Rayleigh

Gaussian
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FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image

in Fig. 5.3.




Noise model

Salt & Pepper

Exponential Uniform

i
k |
FIGURE 5.4 (Continued)
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Images and histograms resulting from adding exponential, uniform. and impulse

noise to the image in Fig. 5.3.
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Periodic Noise
e Periodic noise: from electrical or electromechanical
interference during image acquisition
* Frequency domain filtering can be used to remove this noise

* Fourier transform of a pure sinusoid is a pair of conjugate
impulses

 In the Fourier transform of an image corrupted with periodic
noise should have a pair of impulses for each sine wave
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FIGURE 5.5

{a) Image
corrupted by
sinusoidal noise.
(b} Spectrum
{cach pair of
conjugale
impulses
corresponds to
One SING Wave ).
{Original image
courtesy of
NASA.)

Noise model
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Noise model

e Parameters of periodic noise are typically estimated by
inspection of the FT of the image

« Estimation of parameters of the PDF of noise:

— If the imaging system is available, one simple way is to capture a set
of images of “flat” environments

« Flat environments: a solid gray board illuminated uniformly

— If only the images are available, the parameters of the PDF can be
estimated from small patches of reasonably constant gray levels
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Noise model

ab.c

FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Rayleigh,
and (c) the uniform noisy images in Fig. 5.4.
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Restoration 1n the presence of noise

* When the only degradation 1s noise:

g(x,y)=t(x,y)tn(x,y)
G(u,v)=F(u,v)+N(u,v)
e Spatial filtering 1s the method of choice in this case: Mean
filters, Order-statistics filters, Adaptive filters
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Mean filters

* §,, set of coordinates in a subimage ot size mXn

e Arithmetic mean filter:

f(x y)— p— ;g(s 1)

— Smoothes local variations (noise is reduced because of blurring)

 (Geometric mean filter:

Fa)=| TTets.0
X,y -(SQ;gS |

— Achieves smoothing comparable to arithmetic mean, but tends to lose
less image details
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Mean filters

e Harmonic mean filter: .

f(xny) =

L 8(s,1)

— Suitable for salt noise, does well with Gaussian noise

* (Contraharmonic mean filter 0+1
;g(s 1)

f(x y)_ ;g(S )Q

— Negative Q: Suitable for salt noise
— Positive Q: Suitable for pepper noise
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FIGURE 5.7 (a)
X-ray image.

(b) Image
corrupted by
additive Gaussian
noise. (¢) Result
of filtering with
an arithmetic
mean filter of size
3 X 3.(d) Result
of filtering with a
geometric mean
filter of the same
size. (Original
image courtesy of
Mr. Joseph E.
Pascente, Lixi.
Inc.)
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FIGURE 5.8

(a) Image
corrupted by
pepper noise with
a probability of
0.1.(b) Image
corrupted by salt
noise with the
same probability.
(¢) Result of
filtering (a) with a
3IX3
contraharmonic
filter of order 1.5.
(d) Result of
filtering (b) with
Q = -1.5.
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FIGURE 5.9 Results
of selecting the
wrong sign in
contraharmonic
filtering. (a) Result
of filtering

Fig. 5.8(a) with a
contraharmonic
filter of size 3 X 3
and Q = —1.5.

(b) Result of
filtering 5.8(b) with

0 = 15.
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Order-statistics filters

* Order-statistics filters: spatial filters whose response 1s based
on ordering (ranking) the pixels in the subimage

 Median filters:

VAN

f(x,y)= ngsggcxlyn{g(s,t)}

— Effective for salt and pepper noise

e Max and Min filters
— A = mi {
f(x,y) (gl)ggiy{g(s, )} f(x,y) (f?&y{g“’ )}

— Max filter: useful for finding brightest points in an image (remove
pepper noise)

— Min filter: useful for finding darkest points in an image (remove salt
noise)
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Order-statistics filters
. Midpoint filter:

F(x.y) =3[ max (s} + min {g(s.0)]

— Works best for Gaussian and uniform noise
e Alpha-trimmed mean filter
* d/2 lowest and d/2 highest gray-levels are removed

}(X,y)= :
mn

— Useful for combination of salt-pepper and Gaussian noise
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FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities
P,= P, =0.1.
(b) Result of one
pass with a
median filter of
size 3 X 3.

(c¢) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.
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FIGURE 5.12 (a) Image corrupted by additive uniform noise. (b) Image additionally cor-
rupted by additive salt-and-pepper noise. Image in (b) filtered witha 5 X 5:(c) arithmetic
mean filter; (d) geometric mean filter: (e) median filter; and (f) alpha-trimmed mean fil-
ter withd = 5.
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Adaptive filters

« Adaptive filters: behavior of the filter changes based on
statistical characteristics of the image inside the subimage

(Sxy)
« Adaptive filters have superior performance

e Price: increase 1n filter complexity
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Adaptive, local noise reduction filter

* Response of the filter 1s based on four quantities:
g(x.y)

aj - variance of noise

m, : mean of pixels in S,

= » b=

2 . . . .
o“ : variance of pixels in S,

 The behavior of the filter:

_If (7; is zero, filter should return g(x,y)
— If 0% is high (edges) the filter should return g(x,y)

— If the two variances are almost equal, the filter should return the mean

of the pixels in S, ,
A 0]

f(xay) = g(xa)’)—a_g[g(an’)_mL]
\I(\INU L
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FIGURE 5.13 Slodol L% LLL BB B8 bl hbbbabebh

(a) Image R RS RAEE R, " 28 i TP
corrupted by B : o R

additive Gaussian
noise of zero
mean and
variance 1000,

(b) Result of
arithmetic mean
filtering.

(¢) Result of
geomelric mean
filtering.

(d) Result of
adaptive noise
reduction
filtering. All filters
were of size

7 x 7.
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Adaptive median filtering

e Median filters perform well as long as the density of impulse
noise 1s not large

* Adaptive median filter:
— Handle dense impulse noise
— Smoothes non-impulse noise
— Preserves details
* Zpj,: minimum gray level in S

* Zp.: Maximum gray level in S,
* Zyq Median gray level of S,
* 1z, gray level at coordinate (X,y)

* S, maximum allowed size of S,
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Adaptive median filtering

— Al=z
o A2:Zmed_zmax
— If A1>0 and A2<0 go to B else increase the window size

— If window size<S,_,, repeat A

med ™ Zmin

— Else output z,

— Bl=z
— BZZZXY—Zmax
— It B1>0 and B2<0 output z,

— Else output z_ 4

Xy_zmin
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Adaptive median filtering

|y iisisky

abc

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities B, = P, = 0.25. (b) Result of fil-
tering with a7 X 7 median filter. (c) Result of adaptive median filtering with Sy, = 7.
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Periodic noise reduction

« Bandreject filters remove or attenuate a band of frequencies

(1 D(u,v)<D0—%
H(u,v)=40 DO—%SD(U,V)SDO+%
1 D(u,v)>D0+K
- 2
|
H(u,v) = -
D(u,vYW
14| (u,v) :
D*(u,v)-D,
_l Dz(u,v)—Dg]2
Hu,v)=1-¢ 2 Pl
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Periodic noise reduction
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FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.
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Periodic noise reduction

FIGURE 5.16

{a) Image
corrupled by
sinusoidal noise.

by Spectrum of (a).

{¢) Butterworth
bandreject hlter
{while represents
1). (d) Result of
liltering. (Original
image courtesy of

NASA.)
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Periodic noise reduction

* A bandpass filter performs the opposite of a bandreject filter.
— Hyp(u,v)=1-Hy,(u,v)
* A notch filter rejects (or passes) frequencies in predefined
neighborhood about a center frequency

e Due to symmetry of the FT, notch filters must appear in
symmetric pairs about the origin in order to obtain meaningful
results
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Periodic noise reduction

0 D,(uv)=D,,D,(uv)=D,
H(u,v)=
1 otherwise
1
H(l/l, V) = .
DO
+
D, (u,v)D, (u,v)
1 Dl(”,V)Dz(u,v)}
Hu,v)=1-¢’ Do

Dy (u,v) = (u —u0)2 +(V—Vo)2

D, (u,v) = (u+uy)’ +(v+v,)’
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Periodic noise reduction

-w,.,@(‘

b c
FIGURE 5.18 Perspective plots of (a) ideal. (b) Butterworth (of order 2), and (¢) Gaussian

notch (reject) filters.
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FIGURE 5.19

(a) Satellite image of
Florida and the Gulf of
Mexico showing
horizontal scan lines.
(b) Spectrum. (¢) Notch
pass filter superimposed
on (b). (d) Spatial noise
pattern. (e) Result of
notch reject filtering.
(Original image courtesy
of NOAA.)
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Estimation of degradation

« Since degradations are modeled as being the result of
convolution, restoration is sometimes called deconvolution.

« Estimation of the degradation function:
1. Observation
2. Experimentation
3. Mathematical modeling

(x.) FIGURE 5.1 A
g(x.y 1ol of the
Restoration . pmdd of the
. i f(x.¥) image
filter(s) = .
degradation/
restoration
process.

Degradation
function
H

f(x.y)

Noise
n(x. y)

RESTORATION ‘

DEGRADATION

McMaster
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Estimation by image observation

 We are given a degraded image without any knowledge of H.

* We look at a small section of the image containing simple
structures (e.g., part of an object and the background)

* Using sample gray levels of the object and background, we
can construct an unblurred image of the subimage £ (x,y)

H (u, v)_G(u ,V)
F (u,v)
\k\] \%RI: S
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Estimation by Experimentation

* [f equipment similar to the equipment used to acquire the
degraded 1mage is available it 1s possible a to obtain an
accurate estimate of the degradation.

* The 1dea 1s to obtain the impulse response of the degradation

by imaging an impulse (small dot of light) using the system
G(u V)

H(u,v) =

ab

FIGURE 5.24

Degradation
llm ition by

1m[ ulse
characterization.

(a) An impulse of

light (shown

magnified).

(b) Im\ ed

(deg rxd d)

imp ulse
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Estimation by modeling

e Approach: derive a mathematical model starting from basic
principles
« Example: Images blurred by motion

ab
FIGURE 5.26 (a) Original image. (b) Result of blurring using the function in Eq. (5.6-11)
witha=b=0landT = 1.
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FIGURE 5.25
Illustration of the
atmospheric
turbulence model.
(a) Negligible
turbulence.

(b) Severe
turbulence,

k = 0.0025.

(c) Mild
turbulence,

k = 0.001.

(d) Low
turbulence,

k = 0.00025.
(Original image
courtesy of
NASA))
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FIGURE 5.27
Restoring

Fig. 5.25(b) with
Eq. (5.7-1).

(a) Result of
using the full
filter. (b) Result
with H cut off
outside a radius of
40: (¢) outside a
radius of 70; and
(d) outside a
radius of 85.

McMast. .
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Wiener filtering

abc

FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (¢) Wiener filter result.
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Wiener filtering

=l <=
—_——a
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FIGURE 5.29 (a) Image corrupted by motion blur and additive noise. (b) Result ofinverse filtering. (¢) Resull
of Wiener filtering, (d)-(1) Same sequence. bul with noise variance one order of magnitude less (g)-(i) Same
sequence. but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred

image is quite visible through a “curtain”™ of noise.
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A Simple Example

e 1-D signal

* hisa 2 point signal (h(0) and h(1))

e fisalso a2 point signal

« gis observed: find {f(0) and (1) from g(0), g(1), g(2)

l n(x)

£(x) h(x) U " g(x)

A
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A Simple Example

g(x) = h(x)* f(x) +n(x)
g(x) = E S (x=x)h(x)+n(x)

g(0) = £(0)a(0) + f(=DA) + n(0)
g() = fDAO) + 7 (0)a(1) + n(1)
g(2) = f(2)h(0) + f (D) +n(2)

g(0) = £(0)A(0) +n(0)
g() = f(DAO) + 7 (0)A(1) + n(1)
g(2) = f(HA) +n(2)

\k\l \[énlj
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A Simple Example

 If the noise is not 1ignored, we have five unknowns and only
three equations.

« The original signal (f) cannot be determined uniquely.
« This 1s an example of an ill-conditioned problem.

« Some other knowledge about f 1s necessary.

g(0) = £(0)A(0) +n(0)
g() = f(DAO) + 7 (0)A(1) + (1)
g(2) = f(HA() +n(2)

min{[f(0) - f (D'}

\k\l \LL:!IJ S
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Constrained Least Square Filtering

« g=Hf+n

* Find a restoration filter such that the output of the filter is
smooth:

M-1N-1

C=S SV )

x=0 y=0

V2 f(xsy)’~“4f(x9y)_f(x+19y)_f(x_lay)_f(x9y+1)_f(x7y_1)
e
« After a lengthy procedure (which has been removed in the

new edition of the book) using the fact that the matrix H 1s
circular it can be shown that:

\I(\] l\IHLZI’
e
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Constrained Least Square Filtering

H*(u,v)

M(u,v) = 2 2
() H(u v +7]P,v)

e P(u,v) is the Fourier transform of the Laplacian operator:

0 -1 0]
p(x,y)=-1 4 -1
0 -1 0

* vy 1is a parameter.
* p(x,y) should be padded to a proper size.

* Although mathematical method exists for finding y, in most
practical cases vy 1s selected by trial and error.
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Constrained Least Square Filtering

anbiic

FIGURE 5.30 Results of constrained least squares filtering. Compare (a). (b).and (c¢) with the Wiener filtering
results in Figs. 5.29(c). (). and (1). respectively.
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Geometric Mean Filter

 (Generalization of Wiener filter:

M(u,v)=[H*(u’V)]a H*(u,v)
|H (u,v)) Huf + ;Euvi ]
RURY

* o and P : positive real constants

* oa=1:1inverse filter

* 0=0 : parametric Wiener filter

* o=0, p=1: Wiener filter

* o=1/2, f=1 : spectrum equalization filter
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Image Reconstruction from Projections

Absorption profile

ab
@ |dl|e

FIGURE 5.32

(a) Flat region
showing a simple
object, an input
parallel beam, and
a detector strip.
(b) Result of back-
projecting the
sensed strip data

(i.e., the 1-D absorp-

tion profile). (c) The
beam and detectors
rotated by 90°.

(d) Back-projection.

(e) The sum of (b)
and (d). The inten-
sity where the back-
projections intersect
is twice the intensity
of the individual
back-projections.
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Image Reconstruction from Projections

abc

di[C1h8

FIGURE 5.33

(a) Same as Fig.
5.32(a).

(b)(e)
Reconstruction
using 1,2,3,and 4
backprojections 45°
apart.

(f) Reconstruction
McMaster

University W
| 53

with 32 backprojec-
tions 5.625° apart
(note the blurring).




Image Reconstruction from Projections

abc
FIGURE 5.34 (a) A region with two objects. (b)-(d) Reconstruction using 1, 2, and 4

de f
backprojections 45° apart. (¢) Reconstruction with 32 backprojections 5.625° apart.
(f) Reconstruction with 64 backprojections 2.8125° apart.
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Image Reconstruction from Projections

First generation (G1) scanners: pencil x-ray beam, a single
detector

— For a given angle of rotation, source/detector pair is translated
Second generation (G2): the beam is fan shaped

Third generation (G3): a bank of detector long enough to
cover the entire field of view of a wide beam

Fourth generation (G4): a circular ring of detectors, source
rotates

Fifth generation (G35) also known as electron beam computed
tomography (EBTC): eliminates all mechanical motion, the
beam is controlled electromagnetically

\k \1 Nu
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Image Reconstruction from Projections

» Conventional way of generating CT image: keep patient
stationary during scanning, halt scan, increment position of
the patient, obtain the next image

* Long procedure
« Six generation (helica CT): a G3 or G4 scanner 1s configured

using slip rings that eliminates need for cables
— Source/detector pair move along the axis perpendicular to the scan

« Seventh generation (G7) scanners: a thick fan beam and banks
of detectors are sued to collect data of cross sectional slabs
— Lower cost and dosage
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Image Reconstruction from Projections

ab
Bl &

FIGURE 5.35 Four
generations of CT
scanners. The
dotted arrow
lines indicate
incremental
linear motion.
The dotted arrow
arcs indicate
incremental
rotation. The
cross-mark on
the subject’s head
indicates linear
motion
perpendicular to
the plane of the
paper. The
double arrows in
(a) and (b)
indicate that the
source/detector
unit is translated
and then brought
back into its
original position.
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Image Reconstruction from Projections

xcosf + ysinf = p

-

FIGURE 5.36 Normal representation of a straight line.

)
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Image Reconstruction from Projections

FIGURE 5.37
Geometry of a y
parallel-ray beam. ,
Y A point g(pj, 0x) in
Q the projection

Complete projection, g(p ;).
for a fixed angle
\\\‘A '
\ ‘\ 9,\
- X
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Image Reconstruction from Projections

~=

FIGURE 5.38 A disk
and a plot of its
Radon transform,
derived analytically.
X Here we were able to
plot the transform
because it depends
only on one variable.
When g depends on
both p and 6, the
Radon transform
becomes an image
whose axes are p and
6, and the intensity
of a pixel is
proportional to the
value of g at the
location of that pixel.

g(p)
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Image Reconstruction from Projections

p
l ‘ ll

180

135

6 90

45

180

135

6 90

45

0

ab

clid

FIGURE 5.39 Two images and their sinograms (Radon transforms). Each row of a sinogram
is a projection along the corresponding angle on the vertical axis. Image (c) is called the
Shepp-Logan phantom. In its original form, the contrast of the phantom is quite low. It is

i\v’ICl\I’dS[t‘r shown enhanced here to facilitate viewing.
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Image Reconstruction from Projections

ab

FIGURE 5.40
Backprojections
of the sinograms
in Fig. 5.39.
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Image Reconstruction from Projections

y / v
y
2-D Fourier

transform

Projection ~ F(u, v)

ENY
) '

RN 0\ o)
’\ ' - X \ - U
» | 1-D Fouri

er

transform FIGURE 5.41
Illustration of the
Fourier-slice theo-
rem.The 1-D
Fourier transform
of a projection is
a slice of the 2-D
Fourier transform
of the region from
which the projec-
tion was obtained.
Note the corre-
spondence of the
angle 6.
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Image Reconstruction from Projections

Frequency
domain

Spatial
domain

A

A

Frequency
domain

McMaster

University g8

Frequency
domain

Spatial
domain

ab
cde

FIGURE 5.42

(a) Frequency
domain plot of the
filter |w| after band-
limiting it with a

box filter. (b) Spatial
domain
representation.

(c) Hamming
windowing function.
(d) Windowed ramp
filter, formed as the
product of (a) and
(c). (e) Spatial
representation of the
product (note the
decrease in ringing).




Image Reconstruction from Projections
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FIGURE 5.43

Filtered back-
projections of the
rectangle using (a) a
ramp filter,and (b) a
Hamming-windowed
ramp filter. The
second row shows
zoomed details of the
images in the first
row. Compare with
Fig.5.40(a).




Image Reconstruction from Projections
ab
D D -
Filtered
backprojections of
the head phantom
using (a) a ramp
filter, and (b) a
Hamming-windowed
ramp filter. Compare
with Fig. 5.40(b).
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Source/

L(p,0)

Center ray

Image Reconstruction from Projections

FIGURE 5.45
Basic fan-beam
geometry. The line
passing through
the center of the
source and the
origin (assumed
here to be the
center of rotation
of the source) is
called the center
ray.
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Image Reconstruction from Projections

y FIGURE 5.46
Maximum value
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Image Reconstruction from Projections

y
FIGURE 5.47
Polar
B representation of
,>< an arbitrary point
Source ¢ on a ray of a fan
’,/’ \ R \ beam.
o
D
’
eh B—¢
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Image Reconstruction from Projections

ab
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FIGURE 5.48
Reconstruction of
the rectangle
image from
filtered fan
backprojections.
(a) 1° increments
of @ and B.

(b) 0.5°
increments.

(c) 0.25°
increments.

(d) 0.125°
increments.
Compare (d) with
Fig. 5.43(b).
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FIGURE 5.49
Reconstruction of
the head phantom
image from
filtered fan
backprojections.
(a) 1° increments
of @ and B.

(b) 0.5°

Image Reconstruction from Projections

. m (c)0.25°
increments.
(d) 0.125°
increments.
Compare (d) with
Fig. 5.44(b).
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