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Image Restoration 
•  Similar to image enhancement, the ultimate goal of restoration 

techniques is to improve an image 
•  Restoration: a process that attempts to reconstruct or recover a 

degraded image by using some a priori knowledge of the 
degradation phenomenon. 

•  Technique: model the degradation -> apply the inverse 
process to recover the original image 

•  Enhancement technique are heuristic while restoration 
techniques are mathematical  
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Degradation Model  

•  Problem: given g(x,y) and H find an approximate of f(x,y).  
•  Some statistical knowledge of n(x,y) is available.  

g(x,y)=h(x,y)*f(x,y)+n(x,y) 
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Noise model 
•  Principal sources of noise in digital images: during image 

acquisition, during image transmission 
•  Image acquisition: image sensor might produce noise because 

of environmental conditions or quality of sensing elements 
•  Image transmission: interference in the channel  
•  Assumptions: noise is independent of spatial coordinates 

(except for periodic noise) and independent of the image  
•  Spatial description of noise: statistical behavior of the values 

of the noise (PDF) 
•  Most common PDFs found in image processing: Gaussian 

noise, Rayleigh noise, Erlang (Gamma) noise, Exponential 
noise, Uniform noise, Impulse noise 
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Noise model 
•  Different PDFs provide useful tools for modeling a broad 

range of noise corruption situations: 
•  Gaussian noise: due to factors such as electronic circuit noise, 

sensor noise (due to poor illumination or high temperature) 
•  Rayleigh noise: model noise in range imaging  
•  Exponential and Gamma: laser imaging 
•  Impulse noise:  found in quick transients (e.g., faulty 

switches) 
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Noise model 
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Noise model 



9 

Noise model 
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Periodic Noise 
•  Periodic noise: from electrical or electromechanical 

interference during image acquisition 
•  Frequency domain filtering can be used to remove this noise 
•  Fourier transform of a pure sinusoid is a pair of conjugate 

impulses 
•  In the Fourier transform of an image corrupted with periodic 

noise should have a pair of impulses for each sine wave 
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Noise model 
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•  Parameters of periodic noise are typically estimated by 
inspection of the FT of the image 

•  Estimation of parameters of the PDF of noise: 
–  If the imaging system is available, one simple way is to capture a set 

of images of “flat” environments 
•  Flat environments: a solid gray board illuminated uniformly  

–  If only the images are available, the parameters of the PDF can be 
estimated from small patches of reasonably constant gray levels  

Noise model 
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Noise model 
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Restoration in the presence of noise 
•  When the only degradation is noise:  

g(x,y)=f(x,y)+n(x,y) 
G(u,v)=F(u,v)+N(u,v) 

•  Spatial filtering is the method of choice in this case: Mean 
filters, Order-statistics filters, Adaptive filters  
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Mean filters 
•  Sxy set of coordinates in a subimage of size mXn  
•  Arithmetic mean filter:  

–  Smoothes local variations (noise is reduced because of blurring) 

•  Geometric mean filter:  

–  Achieves smoothing comparable to arithmetic mean, but tends to lose 
less image details  
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Mean filters 
•  Harmonic mean filter: 

–  Suitable for salt noise, does well with Gaussian noise 

•  Contraharmonic mean filter 

–  Negative Q: Suitable for salt noise 
–  Positive Q: Suitable for pepper noise 
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Order-statistics filters 
•  Order-statistics filters: spatial filters whose response is based 

on ordering (ranking) the pixels in the subimage  
•  Median filters:  

–  Effective for salt and pepper noise  

•  Max and Min filters 

–  Max filter: useful for finding brightest points in an image (remove 
pepper noise) 

–  Min filter: useful for finding darkest points in an image (remove salt 
noise) 
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Order-statistics filters  
•  Midpoint filter: 

–  Works best for Gaussian and uniform noise  

•  Alpha-trimmed mean filter 
•  d/2 lowest and d/2 highest gray-levels are removed  

–  Useful for combination of salt-pepper and Gaussian noise 
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Adaptive filters 
•  Adaptive filters: behavior of the filter changes based on 

statistical characteristics of the image inside the subimage 
(Sxy) 

•  Adaptive filters have superior performance 
•  Price: increase in filter complexity 
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Adaptive, local noise reduction filter 
•  Response of the filter is based on four quantities: 
1.  g(x,y)  
2.       : variance of noise  
3.  mL: mean of pixels in Sxy 

4.  σ2
L: variance of pixels in Sxy 

•  The behavior of the filter: 
–  If       is zero, filter should return g(x,y) 
–  If σ2

L is high (edges) the filter should return g(x,y) 
–  If the two variances are almost equal, the filter should return the mean 

of the pixels in Sxy 
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Adaptive median filtering 
•  Median filters perform well as long as the density of impulse 

noise is not large 
•  Adaptive median filter: 

–  Handle dense impulse noise 
–  Smoothes non-impulse noise 
–  Preserves details  

•  zmin: minimum gray level in Sxy 

•  zmax: maximum gray level in Sxy 

•  zmed: median gray level of Sxy 

•  zxy: gray level at coordinate (x,y) 

•  Smax: maximum allowed size of Sxy 
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Adaptive median filtering 
•  A 

–  A1=zmed-zmin 
–  A2=zmed-zmax 

–  If A1>0 and A2<0 go to B else increase the window size 
–  If window size<Smax repeat A 
–  Else output zxy 

•  B 
–  B1=zxy-zmin 
–  B2=zxy-zmax 

–  If B1>0 and B2<0 output zxy 

–  Else output zmed 
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Adaptive median filtering 
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Periodic noise reduction 
•  Bandreject filters remove or attenuate a band of frequencies 
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Periodic noise reduction 
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Periodic noise reduction 
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•  A bandpass filter performs the opposite of a bandreject filter.  
–  Hbp(u,v)=1-Hbr(u,v) 

•  A notch filter rejects (or passes) frequencies in predefined 
neighborhood about a center frequency  

•  Due to symmetry of the FT, notch filters must appear in 
symmetric pairs about the origin in order to obtain meaningful 
results 

Periodic noise reduction 
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Periodic noise reduction 
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Periodic noise reduction 
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Estimation of degradation  
•  Since degradations are modeled as being the result of 

convolution, restoration is sometimes called deconvolution.  
•  Estimation of the degradation function:  

1.  Observation 
2.  Experimentation  
3.  Mathematical modeling  
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Estimation by image observation 
•  We are given a degraded image without any knowledge of H. 
•  We look at a small section of the image containing simple 

structures (e.g., part of an object and the background) 
•  Using sample gray levels of the object and background, we 

can construct an unblurred image of the subimage  
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Estimation by Experimentation  
•  If equipment similar to the equipment used to acquire the 

degraded image is available it is possible a to obtain an 
accurate estimate of the degradation. 

•  The idea is to obtain the impulse response of the degradation 
by imaging an impulse (small dot of light) using the system 
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Estimation by modeling  
•  Approach: derive a mathematical model starting from basic 

principles 
•  Example: Images blurred by motion  
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Inverse filtering 
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Wiener filtering 
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Wiener filtering 
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A Simple Example 
•  1-D signal 
•  h is a 2 point signal (h(0) and h(1)) 
•  f is also a 2 point signal 
•  g is observed: find f(0) and f(1) from g(0), g(1), g(2) 

h(x) f(x) 

n(x) 

g(x) 
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A Simple Example 
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A Simple Example 

•  If the noise is not ignored, we have five unknowns and only 
three equations. 

•  The original signal (f) cannot be determined uniquely.  
•  This is an example of an ill-conditioned problem.  
•  Some other knowledge about f is necessary. 
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Constrained Least Square Filtering 
•  g=Hf+n 
•  Find a restoration filter such that the output of the filter is 

smooth: 

•  After a lengthy procedure (which has been removed in the 
new edition of the book) using the fact that the matrix H is 
circular it can be shown that: 
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Constrained Least Square Filtering 

•  P(u,v) is the Fourier transform of the Laplacian operator: 

•  γ is a parameter. 
•  p(x,y) should be padded to a proper size. 
•  Although mathematical method exists for finding γ, in most 

practical cases γ is selected by trial and error.  
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Constrained Least Square Filtering 
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Geometric Mean Filter 
•  Generalization of Wiener filter:  

•  α and β : positive real constants  
•  α=1 : inverse filter 
•  α=0 : parametric Wiener filter  
•  α=0, β=1 : Wiener filter 
•  α=1/2, β=1 : spectrum equalization filter 	





Image Reconstruction from Projections 
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Image Reconstruction from Projections 
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Image Reconstruction from Projections 
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Image Reconstruction from Projections 
•  First generation (G1) scanners: pencil x-ray beam, a single 

detector 
–  For a given angle of rotation, source/detector pair is translated 

•  Second generation (G2): the beam is fan shaped 
•  Third generation (G3): a bank of detector long enough to 

cover the entire field of view of a wide beam 
•  Fourth generation (G4): a circular ring of detectors, source 

rotates  
•  Fifth generation (G5) also known as electron beam computed 

tomography (EBTC): eliminates all mechanical motion, the 
beam is controlled electromagnetically 
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Image Reconstruction from Projections 
•  Conventional way of generating CT image: keep patient 

stationary during scanning, halt scan, increment position of 
the patient, obtain the next image 

•  Long procedure 
•  Six generation (helica CT): a G3 or G4 scanner is configured 

using slip rings that eliminates need for cables 
–  Source/detector pair move along the axis perpendicular to the scan 

•  Seventh generation (G7) scanners: a thick fan beam and banks 
of detectors are sued to collect data of cross sectional slabs 
–  Lower cost and dosage   
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Image Reconstruction from Projections 
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Image Reconstruction from Projections 


