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What is image restoration? 

 

Image Restoration refers to a class of methods that aim to remove or reduce the degradations that 

have occurred while the digital image was being obtained. 

All natural images when displayed have gone through some sort of degradation: 

 during display mode 

 acquisition mode, or 

 processing mode 

The degradations may be due to 

 sensor noise 

 blur due to camera misfocus 

 relative object-camera motion 

 random atmospheric turbulence 

 others 

In most of the existing image restoration methods we assume that the degradation process can be 

described using a mathematical model. 

 

How well can we do? 

 

Depends on how much we know about 

 the original image 

 the degradations 

(how accurate our models are) 

 

Image restoration and image enhancement-differences: 

 

 Image restoration differs from image enhancement in that the latter is concerned more with 

accentuation or extraction of image features rather than restoration of degradations. 

 Image restoration problems can be quantified precisely, whereas enhancement criteria are difficult 

to represent mathematically. 

 

Image observation models 

 

Typical parts of an imaging system: image formation system, a detector and a recorder. A general 

model for such a system could be: 
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  ),(),(),( jinjiwrjiy   

   



 jdidjifjijihjifHjiw ),(),,,(),(),(  

   ),(),(),(),( 21 jinjinjiwrgjin   

where ),( jiy  is the degraded image, ),( jif  is the original image and ),,,( jijih   is an operator that 

represents the degradation process, for example a blurring process. 

Functions  g  and  r  are generally nonlinear, and represent the characteristics of detector/recording 

mechanisms. ),( jin  is the additive noise, which has an image-dependent random component 

    ),(),( 1 jinjifHrg  and an image-independent random component ),(2 jin . 

 

Detector and recorder models 

 

The response of image detectors and recorders in general is nonlinear. 

An example is the response of image scanners 

 ),(),( jiwjir   

where   and   are device-dependent constants and ),( jiw  is the input blurred image. 

For photofilms 

010 ),(log),( rjiwjir    

where   is called the gamma of the film, ),( jiw  is the incident light intensity and ),( jir  is called the 

optical density. A film is called positive if it has negative  . 

 

Noise models 

 

The general noise model 

   ),(),(),(),( 21 jinjinjiwrgjin   

is applicable in many situations. Example, in photoelectronic systems we may have xxg )( . 

Therefore 

),(),(),(),( 21 jinjinjiwjin    

where 1n  and 2n  are zero-mean, mutually independent, Gaussian white noise fields. 

The term ),(2 jin  may be referred as thermal noise. 

In the case of films there is no thermal noise and the noise model is 

),(),(log),( 110 jinrjiwjin o   
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Because of the signal-dependent term in the noise model, restoration algorithms are quite difficult. 

Often ),( jiw  is replaced by its spatial average, w , giving 

   ),(),(),( 21 jinjinrgjin w    

which makes ),( jin  a Gaussian white noise random field. 

A lineal observation model for photoelectronic devices is 

),(),(),(),( 21 jinjinjiwjiy w    

For photographic films with 1  

),(),(log),( 1010 yxanrjiwjiy   

where ar  ,0  are constants and 0r  can be ignored. 

The light intensity associated with the observed optical density ),( jiy  is 

),(),(10),(10),(
),(),( 1 jinjiwjiwjiI

jianjiy 
  

where 
),(110ˆ),(

jian
jin


  now appears as multiplicative noise having a log-normal distribution. 

 

Keep in mind that we are just referring to the most popular image observation models. In the 

literature you can find a quite large number of different image observation models! 

 

Image restoration algorithms are based on (derived from) the above image formation models! 

 

A general model of a simplified digital image degradation process 

 

A simplified version for the image restoration process model is 

  ),(),(),( jinjifHjiy   

where 

),( jiy  the degraded image 

),( jif  the original image 

H  an operator that represents the degradation process 

),( jin  the external noise which is assumed to be image-independent 

We see in the figure below a schematic diagram for a generic degradation process described by the 

above simplified model 

 



 4 

                                                                                 ),( jin  

 

         ),( jif                                                                                                               ),( jiy  

 

 

Possible classification of restoration methods 

 

Restoration methods could be classified as follows: 

 

 deterministic: we work with sample by sample processing of the observed (degraded) image 

 stochastic: we work with the statistics of the images involved in the process 

 

 non-blind: the degradation process H  is known 

 blind: the degradation process H  is unknown 

  the degradation process H  could be considered partly known 

 

From the viewpoint of implementation: 

 direct 

 iterative 

 recursive 

 

Definitions 

 

We again consider the general degradation model 

  ),(),(),( jinjifHjiy   

If we ignore the presence of the external noise ),( jin  we get 

 ),(),( jifHjiy   

H  is linear if 

     ),(),(),(),( 22112211 jifHkjifHkjifkjifkH   

H  is position (or space) invariant if 

  ),(),( bjaiybjaifH   

From now on we will deal with linear, space invariant type of degradations.  

 

H 
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In a real life problem many types of degradations can be approximated by linear, position 

invariant processes! 

 

Advantage: Extensive tools of linear system theory become available. 

Disadvantage: In some real life problems nonlinear and space variant models would be more 

appropriate for the description of the degradation phenomenon. 

 

Typical linear position invariant degradation models 

 

 Motion blur. It occurs when there is relative motion between the object and the camera during 

exposure. 
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
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otherwise,0
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 Atmospheric turbulence. It is due to random variations in the reflective index of the medium 

between the object and the imaging system and it occurs in the imaging of astronomical objects. 


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 Uniform out of focus blur 
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 Uniform 2-D blur 
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
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 … 

 

Some characteristic metrics for degradation models 

 

 Blurred Signal-to-Noise Ratio (BSNR): a metric that describes the degradation model. 

 
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)},({),( jigEjig   

2
n : variance of additive noise 

 Improvement in SNR (ISNR): validates the performance of the image restoration algorithm. 
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where ),(ˆ jif  is the restored image. 

Both BSNR and ISNR can only be used for simulation with artificial data. 

 

One dimensional discrete degradation model 

 

Suppose we have a one-dimensional discrete signal )(if  of size A  samples )1(,),1(),0( Afff  , 

which is due to a degradation process. 

The degradation can be modeled by a one-dimensional discrete impulse response )(ih  of size B  

samples. If we assume that the degradation is a causal function we have the samples 

)1(,),1(),0( Bhhh  . 

We form the extended versions of )(if  and )(ih , both of size 1 BAM  and periodic with 

period M . These can be denoted as )(ife  and )(ihe . 

For a time invariant degradation process we obtain the discrete convolution formulation as follows  







1

0

)()()()(
M

m
eeee inmihmfiy  

Using matrix notation we can write the following form 

nHfy   
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At the moment we decide to ignore the external noise n . 

Because h  is periodic with period M  we have that 
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We define )(k  to be 

 )2
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M
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)()( kMHk   

)(kH  is the discrete Fourier transform of )(ihe
. 
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It can be seen that 

)()()( kkk wHw   

This implies that )(k  is an eigenvalue of the matrix H  and )(kw  is its corresponding eigenvector. 

We form a matrix w  whose columns are the eigenvectors of the matrix H , that is to say 

 )1()1()0(  MwwwW   









 ki

M
jikw
2

exp),(  and 







 ki

M
j

M
ikw

2
exp

1
),(1  

We can then diagonalize the matrix H  as follows 

HWWDWDWH
-1-1   

where 























)1(

)1(

)0(

M





0

0

D


 

Obviously D  is a diagonal matrix and 

)()(),( kMHkkkD    

If we go back to the degradation model we can write  

 
fDWyWfWDWyHfy

1-1-1  
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1,,1,0 ),()(  MkkFkMHY(k)   

1,,1,0 ),( ),( ,  MkkFkHY(k)   are the M sample discrete Fourier transforms of ),( ),( , ifihy(i)  

respectively. 

So by choosing )(k  and )(kw  as above and assuming that )(ihe  is periodic, we start with a matrix 

problem and end up with M  scalar problems. 

 

Two dimensional discrete degradation model 

 

Suppose we have a two-dimensional discrete signal ),( jif  of size BA  samples which is due to a 

degradation process. 

The degradation can now be modeled by a two dimensional discrete impulse response ),( jih  of size 

DC   samples. 

We form the extended versions of ),( jif  and ),( jih , both of size NM  , where 1 CAM  and 

1 DBN , and periodic with period NM  . These can be denoted as ),( jife  and ),( jihe . 

For a space invariant degradation process we obtain 
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Using matrix notation we can write the following form 

nHfy   

where f  and y  are MN dimensional column vectors that represent the lexicographic ordering of 

images ),( jife  and ),( jihe  respectively. 
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The analysis of the diagonalisation of H  is a straightforward extension of the one-dimensional case. 

In that case we end up with the following set of NM   scalar problems. 

)),()(,(),(, vuNvuFvuMNHv)Y(u   

1,,1,0 ,1,,1,0  NvMu   
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In the general case we may have two functions BiAif  ),(  and DiCih  ),( , where CA,  can 

be also negative (in that case the functions are non-causal). For the periodic convolution we have to 

extend the functions from both sides knowing that the convolution is 

DBiCAifihig   ),()()( .  

 

 

Deterministic approaches to restoration 

 

DIRECT METHODS 

 

1. Inverse filtering 

 

The objective is to minimize 

22
)()( Hfyfnf J  

We set the first derivative of the cost function equal to zero 

0



)(20

)(
HfyH

f

f TJ
 

yHHfH
TT   

If NM   and 1
H

  exists then 

yHf
-1  

According to the previous analysis if H  (and therefore -1
H ) is block circulant the above problem can 

be solved as a set of NM   scalar problems as follows 

),(

),(

),(

),(),(
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1

2 vuH
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
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
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




 

 

Computational issues concerning inverse filtering 

(I) 

Suppose first that the additive noise ),( jin  is negligible. A problem arises if ),( vuH  becomes very 

small or zero for some point ),( vu  or for a whole region in the ),( vu  plane. In that region inverse 

filtering cannot be applied. 

 Note that in most real applications ),( vuH  drops off rapidly as a function of distance from the 

origin ! 

Solution: if these points are known they can be neglected in the computation of ),( vuF . 
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(II) 

In the presence of external noise we have that 

 







2
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),(ˆ

vuH

vuNvuYvuH
vuF  
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vuH

vuN
vuFvuF   

If ),( vuH  becomes very small, the term ),( vuN  dominates the result. 

 

Solution: again to carry out the restoration process in a limited neighborhood about the origin where 

),( vuH  is not very small. 

This procedure is called pseudoinverse filtering. 

In that case we set 
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2
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 In general, the noise may very well possess large components at high frequencies ),( vu , while 

),( vuH  and ),( vuY  normally will be dominated by low frequency components. 

  is a small number chosen by the user. 

 

2. Constrained least squares (CLS) restoration 

 

It refers to a very large number of restoration algorithms. 

The problem can be formulated as follows. 
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minimize 

22
)()( Hfyfnf J  

subject to  


2

Cf  

 

where 

Cf  is a high pass filtered version of the image. 

The idea behind the above constraint is that the highpass version of the image contains a 

considerably large amount of noise! 

Algorithms of the above type can be handled using optimization techniques. 

Constrained least squares (CLS) restoration can be formulated by choosing an f  to minimize the 

Lagrangian 

 22
min CfHfy   

Typical choice for C  is the 2-D Laplacian operator given by 


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
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00.025.000.0

25.000.125.0
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C  

  represents either a Lagrange multiplier or a fixed parameter known as regularisation parameter. 

  controls the relative contribution between the term 
2

Hfy   and the term 
2

Cf . 

The minimization of the above leads to the following estimate for the original image 

  yHCCHHf
TTT 1

   

 

Computational issues concerning the CLS method 

 

(I) Choice of   

The problem of the choice of   has been attempted in a large number of studies and different 

techniques have been proposed. 

One possible choice is based on a set theoretic approach: a restored image is approximated by an 

image which lies in the intersection of the two ellipsoids defined by 

}|{ 22
EQ  Hfyfy|f  and 

}|{ 22
 CfffQ  

The center of one of the ellipsoids which bounds the intersection of y|fQ  and fQ , is given by the 

equation 
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  yHCCHHf
TTT 1

   

with 2)/(  E . 

Problem: choice of 2E  and 2 . One choice could be 

BSNR

1
  

Comments 

With larger values of  , and thus more regularisation, the restored image tends to have more ringing. 

With smaller values of  , the restored image tends to have more amplified noise effects. 

 

The variance and bias of the error image in frequency domain are 
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


  

The minimum MSE is encountered close to the intersection of the above functions. 

A good choice of   is one that gives the best compromise between the variance and bias of the error 

image. 

 

ITERATIVE METHODS 

 

They refer to a large class of methods that have been investigated extensively over the last decades. 

 

Advantages 

 There is no need to explicitly implement the inverse of an operator. The restoration process is 

monitored as it progresses. Termination of the algorithm may take place before convergence. 

 The effects of noise can be controlled in each iteration. 

 The algorithms used can be spatially adaptive. 

 The problem specifications are very flexible with respect to the type of degradation. Iterative 

techniques can be applied in cases of spatially varying or nonlinear degradations or in cases 

where the type of degradation is completely unknown (blind restoration). 

 

A general formulation 

 



 13 

In general, iterative restoration refers to any technique that attempts to minimize a function of the 

form 

)(f  

using an updating rule for the partially restored image. 

 

A widely used iterative restoration method is the method of successive approximations where the 

initial estimate and the updating rule for obtaining the restored image are given by 

0f0   

)(        

)(

k

kk

f

fff



 1k
 

Next we present possible forms of the above iterative procedure. 

 

3. Basic iteration 

 

Hfyf  )(  

0f0   

kkk fHIyHfyff )()(  1k  

 

4. Least squares iteration 

 

In that case we seek for a solution that minimizes the function 

2
Hfyf )(M  

A necessary condition for )(fM  to have a minimum is that its gradient with respect to f  is equal to 

zero, which results in the normal equations 

yHHfH
TT   

and 

)()( Hf-yHf
T  

yHf
T

0   

k
TT

k
T

k

fHHIyH

HfyHff

)(        

)(







1k
 

 

5. Constrained least squares iteration 

 

In this method we attempt to solve the problem of constrained restoration iteratively. 
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As already mentioned the following functional is minimized 

 

22
),( CfHfyf  M  

The necessary condition for a minimum is that the gradient of ),( fM  is equal to zero. That is 

yHfCCHHff
TTT

f  )(),()( M  

The initial estimate and the updating rule for obtaining the restored image are now given by  

yHf
T

0   

])([ k
TTT

k fCCHHyHff  1k  

It can be proved that the above iteration (known as Iterative CLS or Tikhonov-Miller Method) 

converges if 

max

2
0


   

where max  is the maximum eigenvalue of the matrix 

)( CCHH
TT   

If the matrices H  and C  are block-circulant the iteration can be implemented in the frequency 

domain. 

 

6. Projection onto convex sets (POCS) 

 

The set-based approach described previously can be generalized so that any number of prior 

constraints can be imposed as long as the constraint sets are closed convex. 

If the constraint sets have a non-empty intersection, then a solution that belongs to the intersection set 

can be found by the method of POCS. 

Any solution in the intersection set is consistent with the a priori constraints and therefore it is a 

feasible solution. 

Let mQQQ ,,, 21   be closed convex sets in a finite dimensional vector space, with mPPP ,,, 21   their 

respective projectors. 

The iterative procedure 

k1k ff mPPP ,21  

converges to a vector that belongs to the intersection of the sets miQi ,,2,1,  , for any starting 

vector 0f . 

An iteration of the form k1k ff 21PP  can be applied in the problem described previously, where we 

seek for an image which lies in the intersection of the two ellipsoids defined by 
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}|{ 22
EQ  Hfyfy|f  and }|{ 22

 CfffQ  

The respective projections f1P  and f2P  are defined by 

  )(
1

111 HfyHHHIff
TT 


λλP  

  fCCCCIIf
TT ][

1

222


 λλP  

Brief description of other advanced methods 

 

7. Spatially adaptive iteration 

 

The functional to be minimized takes the form 

2W1W
CfHfyf

22
),(  M  

where 

Hf)yWHf)yHfy 1
T

1W
 ((

2
 

Cf)WCf)Cf 2
T

2W
((

2
  

21 WW ,  are diagonal matrices, the choice of which can be justified in various ways. The entries in 

both matrices are non-negative values and less than or equal to unity. 

In that case 

yWHfCWWCHWWHff 1
T

2
T
2

T
1

T
1

T
f  )(),()( M  

A more specific case is  

W
CfHfyf

22
),(  M  

where the weighting matrix is incorporated only in the regularization term. This method is known as 

weighted regularised image restoration. The entries in matrix W  will be chosen so that the high-

pass filter is only effective in the areas of low activity and a very little smoothing takes place in the 

edge areas. 

 

8. Robust functionals 

 

Robust functionals allow for the efficient supression of a wide variety of noise processes and permit 

the reconstruction of sharper edges than their quadratic counterparts. We are seeking to minimize 

CfHfyf xn RRM   )(),(  

() (), xn RR  are referred to as residual and stabilizing functionals respectively. 

 

Computational issues concerning iterative techniques 
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(I) Convergence 

The contraction mapping theorem usually serves as a basis for establishing convergence of iterative 

algorithms. 

According to it iteration 

0f0   

)()( kkk ffff  1k  

converges to a unique fixed point 
f , that is, a point such that   ff )( , for any initial vector, if the 

operator or transformation )(f  is a contraction. 

This means that for any two vectors 1f  and 2f  in the domain of )(f  the following relation holds 

2121 ffff  )()(  

1  

  any norm 

The above condition is norm dependent. 

 

(II) Rate of convergence 

The termination criterion most frequently used compares the normalized change in energy at each 

iteration to a threshold such as 

6

2

2

10





k

k1k

f

ff
 

 

RECURSIVE METHODS 

 

1. Kalman filtering 

 

Kalman is a recursive filter based on an autoregressive (AR) parametrization of the prior statistical 

knowledge of the image. 

A global state vector for an image model, at pixel position ),( ji  is defined as 

TMjMifMjifNjif

jifjifjif

)]1,1(,),1,1(),,1(

,),1,(),,([),(








 

The image model is then defined as 

),()1,(),( jiwjifAjif   

),(),(),( jinjifHjiy   
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 the noise terms ),( jiw  and ),( jin , are assumed to be white, zero-mean, Gaussian processes, 

with covariance matrices wwR  and nnR  

 A  is the state transition matrix 

 H  is the so called measurement matrix 

 

The Kalman filter algorithm 

Prediction 

)1,(ˆ),(ˆ 


nmfAnmf  

ww
T RAnmAPnmP  )1,(),(  

 

Update 

1]),([),(),(   nn
TT RHnmHPHnmPnmK  

)]1,(ˆ),()[,()1,(ˆ),(ˆ  nmfHAnmynmKnmfAnmf  

),(]),([),( nmPHnmKInmP   

 

where 















 





 


T

nmfnmfnmfnmfEnmP ),(ˆ),(),(ˆ),(),(  

   T

nmfnmfnmfnmfEnmP ),(ˆ),(),(ˆ),(),(   

 

2. Variations of the Kalman filtering 

 

2.1 Reduced update Kalman filter (RUKF) 

2.2 Reduced order model Kalman filter (ROMKF) 

 

 

Stochastic approaches to restoration 

 

DIRECT METHODS 

 

1. Wiener estimator (stochastic regularisation) 
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The image restoration problem can be viewed as a system identification problem as follows: 

),( jif                                                  ),( jiy                                                           ),(ˆ jif  

 

 

                                                      ),( jin  

The objective is to minimize the following function 

)}ˆ()ˆ{( ffff
T E  

To do so the following conditions should hold: 

(i) }{}{}{}ˆ{ yWfff EEEE   

(ii) the error must be orthogonal to the observation about the mean 

 0}}){)(ˆ{(  T
yyff EE  

From (i) and (ii) we have that 

 0}}){)({( T
yyfWy EE  0}}){)(}{}{{( T

yyfyWfWy EEEE

0}}){})]({(}){({[  T
yyffyyW EEEE  

If }{~ yyy E  and }{
~

fff E  then 

 0}~)
~~{( T

yfyWE
yfyy

TTTT
RWRyfyyWyfyyW ~~~~}~~

{}~~{}~~
{}~~{  EEEE  

If the original and the degraded image are both zero mean then 

yyyy RR ~~  and fyyf
RR ~~ . 

In that case we have that fyyy RWR  . 

If we go back to the degradation model and find the autocorrelation matrix of the degraded image then 

we get that 

TTTT
nHfynHfy   

yynn
T

ff
T

RRHHRyy }{E  

fy
T

ff
T

RHRfy }{E  

From the above we get the following result 

11 
 )( nn

T
ff

T
ffyyfy RHHRHRRRW  

and the estimate for the original image is 

yRHHRHRf nn
T

ff
T

ff
1 )(ˆ  

Note that knowledge of ffR  and nnR  is assumed. 

 

In frequency domain 

H W 
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),(),(),(

),(),(
),(

2
vuSvuHvuS

vuHvuS
vuW

nnff

ff






 

),(
),(),(),(

),(),(
),(ˆ

2
vuY

vuSvuHvuS

vuHvuS
vuF

nnff

ff






 

 

 

Computational issues 

The noise variance has to be known, otherwise it is estimated from a flat region of the observed 

image. 

In practical cases where a single copy of the degraded image is available, it is quite common to use 

),( vuS yy  as an estimate of ),( vuS ff . This is very often a poor estimate ! 

 

1.1 Wiener smoothing filter 

In the absence of any blur, 1),( vuH  and  

1)(

)(

),(),(

),(
),(







SNR

SNR

vuSvuS

vuS
vuW

nnff

ff
 

(a) 1),(1)(  vuWSNR  

(b) )(),(1)( SNRvuWSNR   

)(SNR  is high in low spatial frequencies and low in high spatial frequencies so ),( vuW  can be 

implemented with a lowpass (smoothing) filter. 

 

1.2 Relation with inverse filtering 

If 
),(

1
),(0),(

vuH
vuWvuSnn   which is the inverse filter 

If 0),( vuSnn  




















0),(0

0),(
),(

1

),(lim
0

vuH

vuH
vuH

vuW
nnS

 

which is the pseudoinverse filter. 

 

ITERATIVE METHODS 

 

2. Iterative Wiener filters 
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They refer to a class of iterative procedures, that successively use the Wiener filtered signal as an 

improved prototype to update the covariance estimates of the original image. 

 

Brief description of the algorithm 

Step 0: Initial estimate of ffR  

 }{)0( T
yyff yyRR E  

Step 1: Construct the thi  restoration filter 

 1 ))(()()1( nn
T

ff
T

ff RHHRHRW iii  

Step 2: Obtain the th)1( i  estimate of the restored image 

 yWf )1()1(ˆ  ii  

Step 3: Use )1(ˆ if  to compute an improved estimate of ffR  given by 

 )}1(ˆ)1(ˆ{)1(  iiEi T
ff ffR  

Step 4: Increase i  and repeat steps 1,2,3,4. 
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