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What is image restoration?

* Image restoration = task of recovering an image
from its degraded version assuming some
knowledge of the degradation phenomenon.

* Models the degradation process and inverts it to
obtain the original from the degraded (observed)
Image.

* Differs from image enhancement — which does
not fully account for the nature of the
degradation.



Degradation Model

g(x,y)=FH f(x,y))+n(xy)

J

Observed image

v

\ T~

Underlying image noise

Forward model of the degradation process: note that this is an

operator

Common Assumptions on FH:

(1) Linearity,
(2) Space Invariance

Q) H Kk F(x,y)+k, £,(x, ) =k H (f,(x, y)) + kKH (f,(x, y)),
@) H(F(X=x,y=Y))=9(X =X,y —VY,)



Degradation Model

* For alinear, space-invariant model, the
degradation process can be modeled using a
convolution:

g(x,y) =(*1)(X,y)+1(X,y)

N

h is the impulse response of the system, i.e. degraded image if f(x,y)
was a unit impulse image — also called as convolution kernel.

* The problem of estimating f from g and h is
called as deconvolution.



Degradation Model

 Many real-world phenomena can be
approximated as linear and space-invariant.

* Non-linear and space-variant models are more
accurate, more general but more complex.

* Even with the simplifying assumption of linearity
and space-invariance, we will see that inverting
the degradation model has many challenges.



Models of Blur

* |[n image restoration, the most commonly
encountered problem is that of blur removal
given a known blur model.

 Animage is said to be blurred when it is
convolved with a low-pass filter of a certain

kind.



Models of Blur

 Defocus blur

* Motion Blur



Defocus Blur

* Occurs when the scene being observed is not
in focus. It is actually spatially variant
dependent on the depth of each point (i.e. its
distance from the camera), but we will model
it here as spatially uniform for simplicity.

* Its frequency response is: H(u,v) «ce e
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Gaussian-blurred image.
Kernel size 15 x 15.
Blur level: 5

Here we are showing plots of
log(magnitude of Fourier
transform +1) for easy
visualization. We will call them
log-Fourier plots

Log-Fourier plot of original Log-Fourier plot of Gaussian-blurred image

image



Motion blur

A commonly occurring form of blur —when
there is relative motion between the camera
and the object/scene being imaged — during
the process of image acquisition.
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Motion Blur

* A camera gathers the image of a scene as follows:

v’ Light from the scene enters the camera during the
exposure time, i.e. when the shutter is open.

v The light passes through the lens and hits a sensor
array (CCD array)

v’ The CCD array performs an integration operation
during the entire exposure time.

v The image is formed on the CCD array after the
shutter closes.



Motion Blur

* |magine an object undergoing motion parallel to the
plane of the camera sensor array.

* Let the motion be translation (for simplicity) given by
X,(t) and y,(t), i.e. the motion is a function of time.

* Let f(x,y) be the intensity at point (x,y) of the true
(underlying) image.



Motion Blur
* Then the observed image is given by:

9%, y) = [ f(x=%(t), y = Yo (t))cl
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Motion Blur

e Let us assume that:

X,(t)=at/T,y,(t)=bt/T
* Then the blur frequency response is:

p T
H (U,V) — J-e—jZﬂ(UXo(t)-%Vyo(t)) dt — je—jZﬁ(au+bv)t/T dt
0 0

T sin(z(au +bv))e- @y
(au +bv)



Log-Fourier plot of original
image

motion blurred
image (motion in X
direction)

Here we are showing plots of
log(magnitude of Fourier
transform +1) for easy
visualization. We will call them

log-Fourier plots

Log-Fourier plot of motion-blurred image
(notice the strong response in the vertical
direction and the sinc-like pattern parallel to
the X axis!)



Example: Restoration by Inverse
Filtering

Known (observed) ?}Nn /Unknown (to be estimated)
0
=(n* ise (f
g (X’ y) (h f )(X, y)’ ﬁ‘:l\tlj)me no noise (for
G (u1 V) — H (U, V) F (U ] V) Convolution theorem

- F(u,v)=G(u,v)/H(u,v) = F(u,v)
f(x,y)=F"(F(u,v))

If H(u,v) is zero, there is a problem in estimating F(u,v). Otherwise this task is
completely well-defined.



Example: Restoration by Inverse
Filtering

Unknown noise
Known (observed) Known Unknown (to be

estimated)
&X, y)=(>*1)(Xy)+n(xy),
G(u,v)=H(u,v)F(u,v) + N(u,
F(u,v) =G(u,v)/H(u,v)
F(u,v)=G(u,v)/H(u,v)—N(u,v)/H(u,v)
F(u,v) = F(u,v)
* If H(u,v) has small values (this will happen for higher frequencies, i.e. higher values

of u and v, if h(x,y) is a blur kernel, i.e. a low-pass filter), the corresponding
estimates of F(u,v) will be hugely erroneous if there is even a tiny amount of noise.

* This is especially because the Fourier Transform of the noise, i.e. N(u,v) (an

unknown quantity), may be greater than F(u,v) for high values for high uand v
(why?)



ORIGINAL image BLURRED IMAGE RESTORED IMAGE

L

S S i
Image restored using Inverse filter with no noise (ideal, non-realistic scenario)

RESTORED IMAGE UNDER NOISE RESTORED IMAGE UNDER NOISE + LPF

%
Image restored using Image restored using
Inverse filter with 0.1% Inverse filter with 0.1%
noise noise followed by a low-

pass filter



Blurring with Holes

* Let us say we put in a cardboard piece with
holes inside the camera aperture.

* The defocus blur can no more approximated
as a Gaussian function.

e Rather, the blur kernel is now represented as a
Gaussian dot-multiplied with a binary pattern
(with values of 1 — wherever there was a hole
and a O wherever there was no hole).



Source of images:
http://giga.cps.unizar.es/~diegog/ficheros/pdf papers/
coded Masia.pdf

Figure 1: Left: Images of the response to a point light of
different apertures (from top to bottom: focused aperture,
defocused circular aperture -defocus depth = 90 cm- and
one of our coded apertures -defocus depth = 90 cm-, shown
inthe right). A LED and black cardboard were used to create
the point light. Right: Canon EF 50mm f/1.8 lens with one of
our coded apertures.


http://giga.cps.unizar.es/~diegog/ficheros/pdf_papers/coded_Masia.pdf
http://giga.cps.unizar.es/~diegog/ficheros/pdf_papers/coded_Masia.pdf
http://giga.cps.unizar.es/~diegog/ficheros/pdf_papers/coded_Masia.pdf
http://giga.cps.unizar.es/~diegog/ficheros/pdf_papers/coded_Masia.pdf
http://giga.cps.unizar.es/~diegog/ficheros/pdf_papers/coded_Masia.pdf

ORIGINAL image CODED MASK: BLURRED IMAGE CODED MASK: RESTORED IMAGE

Using a coded mask, the restored image
is of high quality even under noise (same
0.1% as before). Why does this happen?
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Fourier transform of normal Gaussian blur

- The coded mask preserves higher
08 e frequencies. It also is a spread-

B spectrum kernel, i.e. it is not a pure
low-pass filter. Hence its higher
frequency components have larger
amplitudes and division (in the inverse
filter) does not blow up the noise.
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Fourier tranosfor91 of blur with coded mask
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Flutter Shutter Camera

The same principle is used in the flutter shutter
camera to deal with motion blur.

The shutter of a normal camera is usually open
throughout the exposure duration (denoted by T
in the derivation for motion blur).

This is equivalent to convolution with a temporal
box filter (a low-pass filter).

In a flutter-shutter camera, the shutter is made
to flutter (open and close) during the exposure
time - as per a randomly generated binary
sequence.



Shutter Shutier

"
Close Close

Time Time
Traditional Exposure Coded Exposure Source of images:
http://web.media.mit.
o 50 edu/~raskar/deblur/
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Frequency response of motion blur kernel in a flutter-shutter
camera (blue curve) versus traditional camera (red curve). The
green curve corresponds to a different camera (we are not

studying it here).
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(a) Blurred Image (c) Deblurred Image

Figure 1: Coded exposure enables recovery of fine details in the deblurred image. (a) Photo of a fast moving vehicle. (b) User clicks on four
points to rectify the motion lines and specifies a rough crop. (c) Deblurred result. Note that all sharp features on the vehicle (such as text)
have been recovered.

Source of images: http://web.media.mit.edu/~raskar/deblur/
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Shutter
Open
I

Close

Time

(a) Short Exposure Photo

(b) Traditional, 200ms (d) Our Code, 200ms

(e) Log intensity of (a) (f) Deblurred Image (h) Deblurred Image

Source of images: http://web.media.mit.edu/~raskar/deblur/
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A word of caution

Spread spectrum filters and cameras using them do not “solve”
the problem of the inverse filter.

They merely make use of a spread spectrum filter to work
around the issues with the inverse filter by stabilizing the
deblurring process.

These cameras by design allow less light to enter the camera
during image acquisition and are not superior to normal cameras
for all applications. The images acquired by these cameras may
appear grainier due to lower signal to noise ratio.

But they address one particular application, i.e. deblurring in a
very principled way.

Spread spectrum filters may not be available in many different
applications — such as motion blur in an image acquired by a
typical camera.



Wiener Filter

Spread spectrum filters are not always possible in
many applications.

The inverse filter approach on previous slides
made no explicit use of the knowledge of the
noise model.

The Wiener filter is one approach which makes
use of knowledge of the statistical properties of
the noise besides the degradation function.

It attempts to remove both noise as well as the
blur.



Wiener filter

* |ts aim is to produce an estimate of the
underlying image such that the expected
mean square error between the true and
estimated images is minimized:

e?(f (% y)) = E(J] (f(x, y)— f(x, y))*dxdy)
= E(ﬂ (F(u,v) — F(u,Vv))?dudv) by Parseval's theorem



Wiener filter

* |t asks the questions: which linear space-
invariant filter shall I apply to the degraded
image (i.e. with which filter shall | convolve
the degraded image) to produce an estimate
that is as close to the original as possible, in a
least squares sense, on an average”?

* |t minimizes the blow-up of noise during
deconvolution, especially at frequencies
where the signal to noise ratio is very poor
(i.e. low).



Wiener filter

 Assumptions made by the Wiener filter:
v Noise is independent of the image,
v’ Noise statistics do not change spatially

v’ Either the image or the noise (or both) has
(have) zero mean

v’ Second order statistics of the image and the noise
are known

e Wiener filter is also called as a minimum mean
square error filter due to the criterion it
optimizes.



Wiener filter

g(x,y) = (h* )X, y)+n(Xx.y),

Estimate of the Fourier

G(u,v)=H(u,v)F(u,v ’ transform of f
; H™(u,v)S, (u,v)

F(u,v)= >
| H(u,v) [ S;(u,v)+S,(u,v)
_ 2H*(u,v) G(U.v)
| H(u,v) ["+S,(u,v)/S; (u,v)
1 [H(u,v)[

H(u,v) [H(u,v)  +S, (u,v)/S,

Frequency spectrum means magnitude
of the Fourier transform.

G(u,v)

G(u,v)

—— Power spectrum of
original signal = | F(u,v)|?
Power spectrum means magnitude- \ '
squared of the Fourier transform. Wiener filter

Power spectrum of
noise = | N(u,v)|?



Noise to signal ratio (or inverse
signal to noise ratio — ISNR)

£ (u,v) = 1 |H(uv)|/ G(u.v)

H(u,v) [H(u,v) [ +S, (u,v)/S, (u,v)

4 Sl G(u,v)
H(u,v)], ,(U,V)
| H (U,V) |2 Sf (U,V) enoising filter
Deblurring filter

* At frequencies (u,v) where the signal is much stronger than the noise, the ISNR
is 0, and the Wiener filter reduces to the inverse filter.

* At frequencies (u,v) where the signal is much weaker, the ISNR will be large and
the corresponding component G(u,v) will be attenuated (note that the Wiener
filter cannot reconstruct such components well!)

*When there is no blurring, but only noise, we have:
A 1
F(u,v) =
1+S, (u,v)/S;(u,v)

G(u,v),~H(u,v) =1



Wiener filter

The Wiener filter requires us to know the ISNR at
different frequencies.

We usually do not have knowledge of this quantity, but
we can provide some estimate (or guess-timate).

For example, in most (photographic) images, the ISNR
is low at lower frequencies and high at higher
frequencies.

Why? Images typically have high energy at lower
frequencies, and low energy at higher frequencies. But
noise is typically spread-spectrum.



Derivation of Wiener filter in deconvolution

http://en.wikipedia.org/wiki/Wiener deconvolution

g(X, y) — h(X’ y)* f (X’ y) + U(X’ y) We want to find a linear filter whose Fourier transform is L(u,v)

G(U V) —H (U V)F (U V) +N and which minimizes the following expected value.
F(u,v) = L(U,W

E((F(u,v) = F(u,v))*) = E( F(u,v) - L(u,V)G(u,v) F)

- E( F(U,V) B L(U,V)(H (U,V)F(U,V) +N (U’V)) |2) Both these terms are 0
= E(| F(u,v) — L(u,v)H (u,v)F(u,v) — L(u,v)N(u,v) [*) pecauise the Image and

uncorrelated and one or

=E( F(u,v) FI1-LuVH UV )+ EQLUV) FINUV) F) 2 o0 e o mean
—E((F(u,v)—L(u,v)H (u,v)F(u,v))L*(u,v)N *(u,v)a/ S0 E(F(uv)N*(u,v)) =

—E(L(u,v)N(u,v)(F(u,v) - L(u,v)H (u,v)F (u,v))* / R

=S2(u,v) [1=L(u,v)H u,v) F +|L(u,v) [ S?(u,v) +0+
E(IN(u,v)[?) = Sn*(u,v)
l, E(|L(uv)1?) = [Luv)]?
E(F () 12) = SP(uv) as L is not a random
! ! variable



http://en.wikipedia.org/wiki/Wiener_deconvolution

Derivation of Wiener filter in deconvolution

http://en.wikipedia.org/wiki/Wiener deconvolution

Note: as theimage and noise are uncorrelated, we have :
E((F(u,Vv) = 2 )(N (U, V) = 2y )*) =0

Either the image or the noise has zero mean, let us assume z,, = 0.
S E((F(u,v)— gz )N(u,v)*)=0

s E(F(u,v)N(u,v)*)—E(x-N(u,v)*) =0

s E(F(u,v)N(uU,v)*)— u-E(N(u,v)*) =0

S E(F(u,v)N(u,v)*)=0as E(N(u,v)*) =z, =0


http://en.wikipedia.org/wiki/Wiener_deconvolution

Derivation of Wiener filter in deconvolution

http://en.wikipedia.org/wiki/Wiener deconvolution

Taking complex derivative w.r.t.L(u,Vv) and settingit to0, we get :
S?(ulv)(l_ L(U,V)H (U,V))*(—H (U,V)) + L*(U,V)Ss (U,V) =0

.'.L*(U,V)z Sf(U,V)H(U,V) Sf(U,V)H *(U,V)

2 2 2 = L(u,Vv) = 2 2
S, (U,v)+S¢(u,v)H"(u,v) S, (U,v)+S¢(u,v)H"(u,v)

Note: If zisacomplex variable, then

di(zz*): z"

z

d 1( 0 . O
E(') :2(8)((')_ Jay(-)j


http://en.wikipedia.org/wiki/Wiener_deconvolution

Interactive Wiener filter

 Asthe ISNR is unknown, we can substitute it
by a constant K, which we can choose
interactively based on visual appeal.

)= 1 | H(u,v) |
| H(u,v) |H(u,v) ] +K

G(u,v)

* Look at figures 5.28 and 5.29 of the book

(pages 355, 356) for examples of results using
this method.



FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (¢) Wiener filter result.

Image taken from the Book by Gonzalez and Woods



g e
def
EBhi

FIGURE 5.29 (a) Image corrupted by motion blur and additive noise. (b) Result of inverse fltering. (¢) Resull
of Wiener filtering, (d)}-(I') Same sequence. but with noise variance one order of magnitude less (g)-(i) Same
sequence, but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred
image is quite visible through a “curtain™ of noise.

Image taken from the Book by Gonzalez and Woods



FIGURE 5.29 (a) Image corrupled by motion blur and additive noise, [by Hesult of inverse fllering, (c) Rasull
ol Wilener Hierng (-0 Same saquence, bul with nokse varanoe one opder of magnitice less (2)-00) Same
soquencs, but nodse varance reduced by five orders of magnitude from (o) Noto in (h) how the deblurred
Imege 2 quile visble mougha “cortaln” ol nolse

Image taken from the Book by Gonzalez and Woods



Original Image (courtesy of MIT) Blurred Image

Restored Image

http://www.mathworks.in/help/images/examples/deblurring-images-using-a-wiener-
filter.html
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Original Image (courtesy of MIT) Simulate Blur and MNoise

Restoration of Blurred, Moisy Image Using NSRE =10 Restoration of Blurred, Moisy Image Using Estimated NSR

i G

http://www.mathworks.in/help/images/examples/deblurring-images-using-a-wiener-
filter.html
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Regularized Restoration

 We know that the inverse filter is unstable if
there is noise in the measured image.

* The inverse filter (given a fixed blur kernel)
comes from the least squares criterion.

f =argmin, > (g(x,y)—(h* £)(x,y))
< F =argmin_ Z(G(u,v) —H(u,v)F(u,v))

< F(u,v)=argmin;, ,(G(u,v) - H(u,v)F(u,v))




Regularized Restoration

* Now we modify our criterion.

 We say that in addition to a least squares
solution, we want a solution (i.e. an image)
whose derivatives are not allowed to be
arbitrarily large.



Regularized Restoration

* Let’s pick the Laplacian as our derivative
operator:

2 2
Af :2 ‘; +‘Zy‘; ~ F (XL Y) + F (=1 )+ FOGY+D)+ F (6 Y —1)—4F (X, Y)
X

* You know that the Laplacian can be represented
by a convolution with the mask:

0O 1 O
p=|1 -4 1| Af =p*f

0 1 O



Regularized Restoration

 The Fourier transform of the Laplacian of the
image is given by P(u,v)F(u,v).

 Here P(u,v) is the Fourier transform of an

appropriately zero-padded version of the
convolution kernel.



Regularized Restoration

 Hence the frequency response (i.e. Fourier
transform) of the desired filter is obtained as

follows:
Fmaromin, 2 ig(ix(’xyil,(yll +ff)E:’—yi)y)+ FEG YD+ (XY ~D) —4F (x,Y))
F <argmin, F(6(030 = HOIF @Y +7PUNFO0] The scond
F(u,v) =argmin,,,(G(u,v) - H(u,v)F (u,v))* + (P(u,v)F(u,v)) ‘:;’r:‘eval,s
L Fuv) = SUHUY) theorem

H?(u,v)+P?(u,v)



Regularized Restoration

* How to pick the parameter Y?

* Method 1: Pick it interactively till you get a
visually pleasing result.

e Method 2: Start with some initial value of Y.
Compute a residual vector r=9-H, Compute its
squared norm Ifl'/M . If it is too far away from
the noise variance, readjust Y. Otherwise
stop. Note: in many applications, the noise
variance can be estimated,.



_Blur is not always bad

Motion blur conveys a sense of speed:
can be used to estimate direction of
motion of a moving object (or direction of
camera motion) from a still image

Aesthetic effects!:

http://www.smashingmagazine.com/2008/08/
24/45-beautiful-motion-blur-photos/
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Variation in blur conveys depth information

Aesthetic blur: Bokeh
http://en.wikipedia.org/wiki/Bokeh
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PCA-based denoising



Using PCA for image denoising

* You have seen the non-local means (NLMeans)
algorithm (patch-based filtering).

* |t uses the fact that natural images have a
great deal of redundancy —i.e. several patches
in distant regions of the image can be very
similar.

A ZXJ% w;l(X;, ;) Difference
/(X;‘,_)/;‘) = | between
ij,y- W patches

A1 (00— 0—
Hfj = exp (_-5-7}‘“15&’(.{:1)1(){“ yf) o IIEELJ(.CI)] Xj* yj) Hz)
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Use of PCA for denoising

* This “non-local” principle can be combined
with PCA for denoising.

* Consider a clean image | corrupted by additive
Gaussian noise of mean zero and standard
deviation o, to give noisy image J as follows:

J=1+N, N~ Gaussian distribution of mean 0
and standard deviation o.

 Given J, we want to estimate |, i.e. we want to
denoise J.



Use of PCA for denoising

Consider a small p x p patch —denoted q,.;- in J.

Step 1: We will collect together some L patches
{9.,9,,---,9,} from J that are structurally similar to
q,.s — pick the L nearest neighbors of q, .

Note: even if J is noisy, there is enough
information in it to judge similarity if we assume
0 << average intensity of the true image |.

Step 2: Assemble these L patches into a matrix of
size p? x L. Let us denote this matrix as X .



Use of PCA for denoising

* Step 3: Find the eigenvectors of X X T to
produce an eigenvector matrix V.

» Step 4: Project each of the (noisy) patches
{9.,9,,---,9,} onto V and compute their eigen-
coefficient vectors denoted as {a,, a,,..., o }
where a. = V'q_..

* Step 5: Now, we need to manipulate the
eigencoefficients of q,.¢ in order to denoise it.



Use of PCA for denoising

* Step 5 (continued): We will follow a Wiener filter
type of update:

Brer (1) = %aref(l)i) <l<p?-1
(o)

1+

> Noise variance (assumed known)

a’ () —> Estimate of coefficient squared of true signal

Note : a, is a vector of eigencoeff icients of the reference (noisy)patchand contains

p? elements, of which thel - thelement is a. (1). B, is the vector of eigencoeff icients
of thefiltered patch.

L
@ (1) = max(O,%Zaf(l) _6?)
i=1
Why thisformula? We will see later.

* Step 6: Reconstruct the reference patch as
follows: a&™=VB,



Use of PCA for denoising

* Repeat steps 1 to 6 for all p x p patches from
image J (in a sliding window fashion).

* Since we take overlapping patches, any given
pixel will be covered by multiple patches (as
many as p? different patches).

* Reconstruct the final image by averaging the
output values that appear at any pixel.



Comments: Use of PCA for denoising

* Note that a separate eigenspace is created for
each reference patch. The eigenspace is
always created from patches that are similar

to the reference patch.

* Such a technique is often called as spatially
varying PCA or non-local PCA.



Patch similarity: Use of PCA for
denoising

* To compute L nearest neighbors of q,, restrict
your search to a window around q, .

* For every patch within the window, compute
the sum of squared differences with q,, i.e.

compute: >3 (g, G, ) s, i))?-

i=1 j=1

* Pick L patches with the least distance.

Search window for similar patches

q ref




Sample result

The results with a global
eigenspace (consisting of all
patches from the image) yield
poorer results — see top row,
rightmost image.

The results improve with spatially
varying PCA provided the number
of patches is large enough. The
best results with this method
generally outperform the results
with a bilateral filter which is a
purely local technique.

Figure 3: Left to right, top to bottom:Original image; noisy image (under zero mean, iid
Gaussian noise with ¢ = 20); image reconstructed usign glohal PCA| i.e. part (a); image
reconstructed using spatially vaying PCA| i.e. par* ’b), with L = 25; image reconstructed
using spatially vaying PCA, i.e. part (b), with L = 200; result with bilateral filtering
for 20 iterations with ogpetiar = 8 and Ointensity = 8; result with bilateral filtering for 20
iterations with ogpatiat = 8 and Tintensity = 5



Use of PCA in denoising: why Wiener-
like update?

: — : <l < n?_ Eigen-coefficients of the “true patch”. We are
g )= Uizl = o7 =1 looking for a linear update which motivates
= arg min, gy E(4, (1) =k (et (1)° this equation.

=argmin,, E((B, (1)) +k(1)*a; (1) - 2k()e; (1) B, (1))

n, represents a vector of pure noise

. . NOiSy __ ftrue T Gn0isy __ \ /T /true values which degrades the true patch
Consider : q "=q +m Vg =V (q' +N, ) to give the noisy patch. Its projection
A7 (|) = ’BI (|) + 7. (|) onto the eigenspace gives vector Y..

We will drop the index | and subscripti for better readability :

- k*=argmin, E(B° +k’a’ — 2kpBa)

=argmin, E(8° +k*(8+7)" - 2kB(B +7))

=argmin, E(8°) +K°E(8° +°) —2kE(S°), as E(By) = E(B)E(»)|=0

since E(y) =|E(V'n)=V"'E(n) =0 \

As the image and the noise
are independent

v
As the noise is zero mean



Use of PCA in denoising: why Wiener-
like update?

Setting derivative w.r.t.k to0, we get

Y () k- EBD) _E()
)R e A TR

How should we estimate E(5%)?

Recall : : : :
Since we are dealing with
a (1) =4 +r )= A1)+ y(1) L similar patches, we can
assume (approximately)
S E(a? (D) =E(B2()+E(2(D) > that the I-th eigen-
: 201 _ 201V _ <2 coefficient of each of
~B(F () =Bl (1)) -0 those L patches are very
_ %iaiz(l) 5P similar.
i=1

This may be a negative value, so weset it tobe

£ (1) = a0, o (1) - o*)



