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• Image degradations
• motion blur, focus blur, resolution

• The inverse filter

• The Wiener filter

• MAP formulation

In contrast to image enhancement, in image restoration the 
degradation is modelled. This enables the effects of the
degradation to be (largely) removed



Degradations

• original

• optical blur

• motion blur

• spatial quantization (discrete pixels)

• additive intensity noise



Overview – Deconvolution

The objective is to restore a degraded image to its original 
form.

An observed image can often be modelled as:

where the integral is a convolution, h is the point spread 
function of the imaging system, and n is additive noise. 

The objective of image restoration in this case is to 
estimate the original image f from the observed degraded 
image g.



Degradation model

Model degradation as a convolution with a linear, shift 
invariant, filter h(x,y)
• Example: for out of focus blurring, model h(x,y) as a Gaussian

i.e. : g(x,y) = h(x,y)    f(x,y)*

f(x,y) g(x,y)

*

h(x,y)

original blurred

h(x,y) is the impulse response or point spread function of the imaging system



The challenge: loss of information and noise

Gaussian 
scale=3 pixels

*
FT FT Inverse FT

x

Blurring acts as a low pass filter and attenuates higher spatial frequencies



Definitions

• f(x,y) – image before degradation, ‘true image’
• g(x,y) – image after degradation, ‘observed image’
• h(x,y) – degradation filter
• f(x,y) – estimate of f(x,y) computed from g(x,y)
• n(x,y) – additive noise

f(x,y)
degradation

h(x,y) n(x,y)

f(x,y)
restoration

g(x,y)

g(x,y) = h(x,y)   f(x,y) + n(x,y)  G(u,v) = H(u,v) F(u,v) + N(u,v)*



The inverse filter



Restoration with an inverse filter

F(u,v) = G(u,v) / H(u,v)

f(x,y)
F.T.

g(x,y)
Inverse filter I.F.T.

G(u,v) F(u,v)

g(x,y) = h(x,y)   f(x,y) + n(x,y)  G(u,v) = H(u,v) F(u,v) + N(u,v)

Start from the generative model

and for the moment ignore n(x,y), then an estimate of f(x,y) is 
obtained from

*



1D vector explanation

Fourier trick



Example : Deblurring (deconvolution)

Image blurred with Gaussian point spread function

h(x,y) = n(x,y) = Normal distribution, mean zero 

blur  = 1.0 pixels

noise  = 0.3 grey levels

f(x,y) g(x,y)

Restoration with an inverse filter

F(u,v) = G(u,v) / H(u,v) where H(u,v), is the FT of the Gaussian



Deblurring with an inverse filter

g(x,y)

F(u,v) = G(u,v) / H(u,v)

blur  = 0.5 pixels

noise  = 0.3 grey levels

blur  = 1.0pixels blur  = 1.5pixels

f(x,y)



The problem of noise amplification

Schematically …

G(u,v) = H(u,v) F(u,v) + N(u,v)

F(u,v) = G(u,v) / H(u,v) = F(u,v) + N(u,v) / H(u,v)

F(u,v) H(u,v)

H(u,v)F(u,v)

F(u,v)

1/H(u,v)

N(u,v)

F(u,v)

G(u,v)

1

1

0 u,v

x +

0 u,v 0 u,v 0 u,v

0 u,v0 u,v0 u,v

x



high spatial frequency sinusoids

f(x,y)

blur  = 1.0 pixels



The Wiener filter



The Wiener filter

F(u,v) = W(u,v) G(u,v)



Frequency behaviour

F(u,v) = W(u,v) G(u,v)

• If K = 0 then W(u,v) = 1 / H(u,v), i.e. an inverse filter

• If K >> |H(u,v)| for large u,v, then high frequencies are attenuated

• |F(u,v)| and |N(u,v)| are often known approximately, or

• K is set to a constant scalar which is determined empirically

• A Wiener filter minimizes the least square error



G(u,v) = H(u,v) F(u,v) + N(u,v)

F(u,v) H(u,v)

H(u,v)F(u,v)

F(u,v)

1/H(u,v)

N(u,v)

F(u,v)

G(u,v)

1

1

F(u,v) = W(u,v) G(u,v)

Schematically …

W(u,v)

0 u,v 0 u,v

x +

x



Restoration with a Wiener filter

F(u,v) = W(u,v) G(u,v)

f(x,y)
F.T.

g(x,y)
Wiener filter I.F.T.

G(u,v) F(u,v)

G(u,v) = H(u,v) F(u,v) + N(u,v)



Example 1: Focus deblurring with a Wiener filter

g(x,y)

F(u,v) = W(u,v) G(u,v)
blur  = 1.5 pixels
noise  = 0.3 grey levels

f(x,y)

K = 1.0 e -5 K = 1.0 e -1K = 1.0 e -3



g(x,y)

blur  = 3.0 pixels
noise  = 0.3 grey levels

f(x,y)

K = 5.0 e -4

f(x,y)



Wiener filter – sketch derivation

Parseval’s Theorem

since f(x,y) and (x,y) uncorrelated

• Note, integrand is sum of two squares



Minimize integral if integrand minimum for all (u,v)

NB 

Note: filter is defined in the Fourier domain



Example 2: Motion deblurring

Suppose there is blur only in the horizontal direction
e.g. camera pans as image is acquired

Degradation model

Require H(u,v) for Wiener filter



interchange order of spatial and temporal integration

where 



Note, H(u,v) has zeros – a problem for an inverse filter

FT of …

pixels



Motion deblurring with a Wiener filter
blur = 20 pixels

1. Compute the FT of the blurred image 
2. Multiply the FT by the Wiener filter 
3. Compute the inverse FT

F(u,v) = W(u,v) G(u,v)



Application: Reading number plates

Algorithm
1. Rotate image so that blur is horizontal
2. Estimate length of blur
3. Construct a bar modelling the convolution
4. Compute and apply a Wiener filter 
5. Optimize over values of K



f(x,y) h(x,y) f(x,y)

blur = 30 pixels



Maximum a posteriori (MAP) 
Estimation



Generative model (forward process)

• original f(x,y)

• motion blur

• additive intensity noise

For an image with n pixels, write this process as

ĝ = Af + n

where ĝ and f are n-vectors, and A is an n× n matrix.



Inverse problem

• Estimate f(x,y) by optimizing a cost function:

Likelihood/ 
loss function

prior/ 
regularization

Example

to suppress high frequency noise

f̂ = argmin
f
(g − Af)2 + λp (f)

observed 
image

generated 
image

p (f) = (∇f)2



Example 3: Super resolution

Suppose there are multiple images of the same scene
each displaced spatially …

After registration the samples are not coincident
and this may be used to defeat the Nyquist limit.



Intuitive model

Treat images as point samples

more images

• increase resolution

• reduce noise

low

high



Generative Model

Registrations, 
lighting and 

blur.

High-resolution 
image, f.

g1 g2 g3 g4

Low-resolution images

M4M3M2M1



Sketch solution

• Estimate the super resolution image which minimizes
the error between predicted and observed images.

Non-examinable

Write the generative model for one image i as

gi = Mif + ηi

where Mi combines registration, lighting and down-sampling.



likelihood prior



Super resolution example I: Mars

25 JPEG images courtesy of the Mars lander

images are from different sweeps of a rotating camera



Super resolution result

Original frame Average image Super-resolution

2x zoom from 25 JPEG images.



Super resolution example II: car sequence

rotating DV camera



Mosaic



Super-resolution result for ROI

original ROI four times resolution

85 JPEG images

35 x 20 pixels



Super resolution example III: Run Lola Run



Input – low resolution



Super-resolution output



Blind deblurring Non-examinable

So far we have assumed that we know the generative model, e.g.

*=

i.e. that h(x,y) is known, so that given the observed 
image g(x,y), then the original image  f(x,y) can be 
estimated (restored)

Consider if only the observed image g(x,y) is known. 
This is the problem of blind estimation.

g = A(h) f

G = H F



min
f ,h

(g − A(h) f)2 + λpf (f) + μph (h)

Blind deblurring continued

• Estimate f(x,y) and h(x,y) by optimizing a cost function:

Likelihood/ 
loss function

image 
prior

observed 
image

generated 
image

blur 
prior



Example I: Blind deblurring

blurred image estimated 
blur filter restored image



More examples of blind deblurring

Blurry  input Deblurred output


