Image Enhancement in the Spatial Domain

Jesus J. Caban

Outline

- 1. Need to know the papers you are presenting by 9/15/10
- 2. Questions about homework?
- 3. Today's Topic: Image Enhancement

Introduction: Image Enhancement

- Goals:
 - Noise Removal
 - Feature Enhancement
 - Visualization
- Common Techniques
 - Simple (conceptually and computationally)
 - Generally applicable (domain independent)
 - Often heuristic (difficult to define final image "quality")

Image Enhancement: Spatial Domain

- The spatial domain:
 - The image plane
 - For a digital image is a Cartesian coordinate system of discrete rows and columns.
 At the intersection of each row and column is a pixel. Each pixel has a value,
 which we will call intensity.
- The frequency domain :
 - A (2-dimensional) discrete Fourier transform of the spatial domain
- Enhancement:
 - To "improve" the usefulness of an image by using some transformation on the image.
 - Often the improvement is to help make the image "better" looking, such as increasing the intensity or contrast.

Image Enhancement

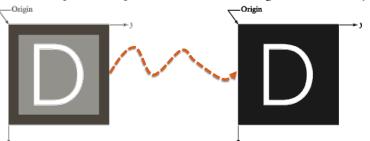
• A mathematical representation of spatial domain enhancement:

$$g(x, y) = T[f(x, y)]$$

where f(x, y): the input image

g(x, y): the processed image

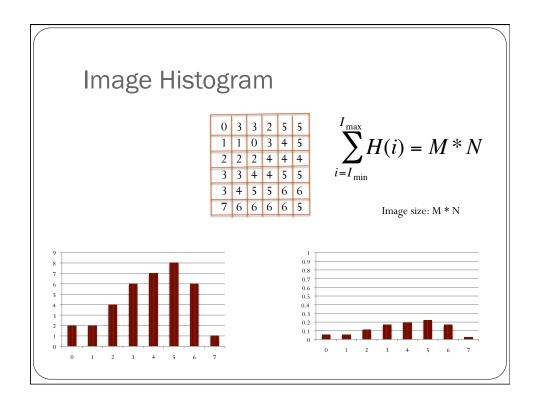
T: an operator on f, defined over some neighborhood of (x, y)

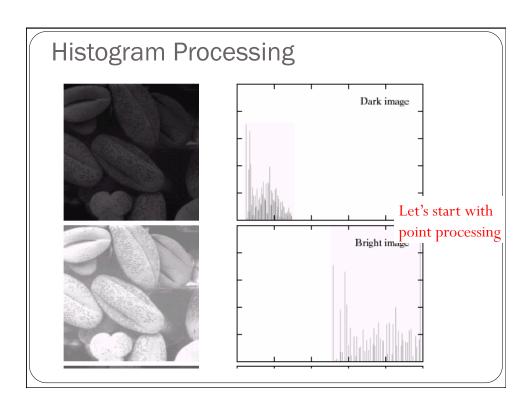


The Image Histogram

- The image histogram shows the frequency distribution of gray values in the image.
- Histogram discards spatial information and shows relative frequency of occurrence of gray values

0	3	3	2	5	5
1	1	0	3	4	5
2	2	2	4	4	4
3	3	4	4	5	5
3	4	5	5	6	6
7	6	6	6	6	5



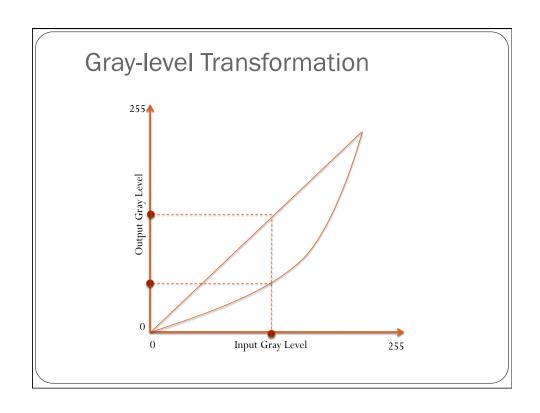


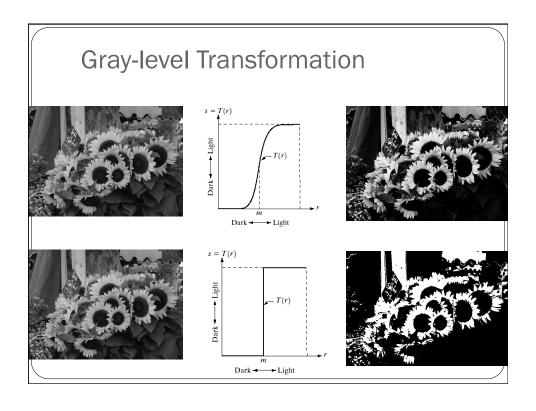
Enhancement through Point Processing

- Based on the intensity of a single pixel only as opposed to a neighborhood or region
- Straightforward methods typically used to globally adjust
 - Contrast
 - The difference in gray levels or luminance value over some area of the image
 - \bullet Contrast Range: $\mathbf{I}_{\max} \mathbf{I}_{\min}$
 - ullet Contrast Ratio: I_{max}/I_{min}
 - Color
 - Intensity

Contrast Enhancement: Scaling

- General Idea:
 - Apply a linear (non-linear) scaling transform to every point in the image to obtain a new (modified) image.





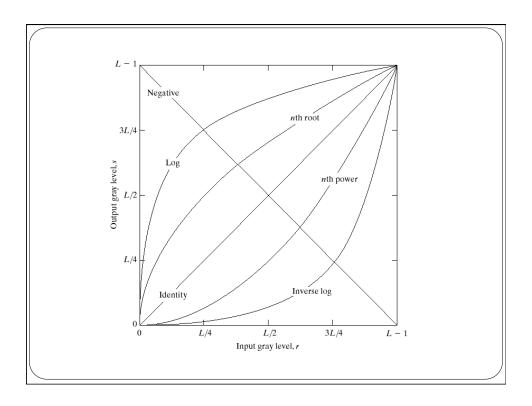
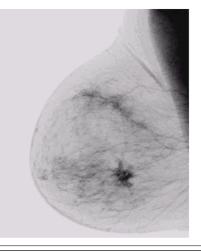


Image Negatives

• Let the range of gray level be [0, L-1], then

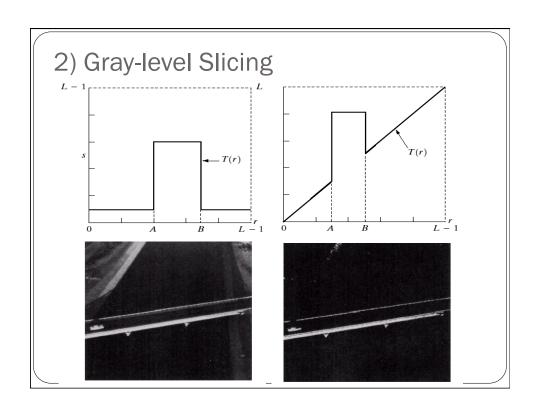


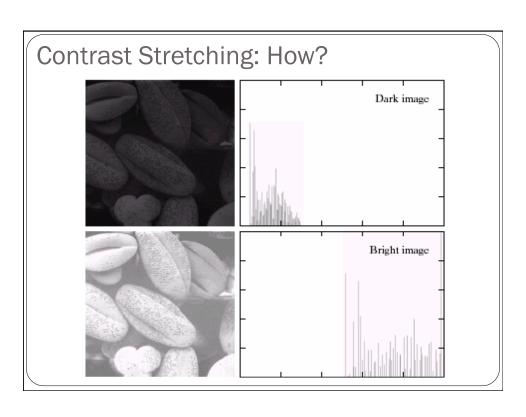


Gray-level: Manipulation

- 1) Contrast Stretching
- 2) Gray-level Slicing

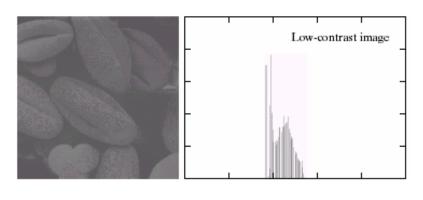
1) Contrast Stretching L-1 Paul (kd India) L/4 L/2 L/4 L/2 Jack L/2 Input gray level, r

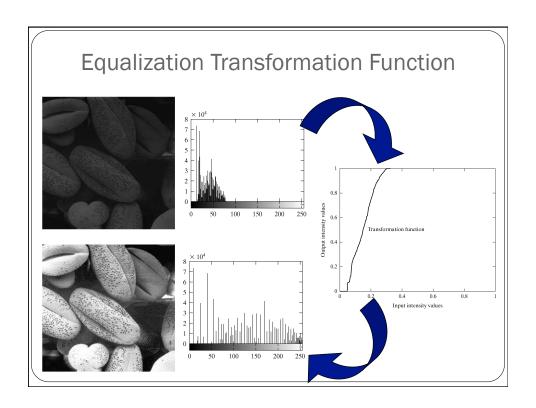




Histogram Equalization

- Histogram equalization:
 - To improve the contrast of an image
 - To transform an image in such a way that the transformed image has a nearly uniform distribution of pixel values

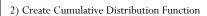




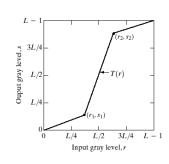
Histogram Equalization

1) Probability of Occurrence

$$p_x(i) = p(x=i) = \frac{n_i}{n}, \quad 0 \le i < L$$

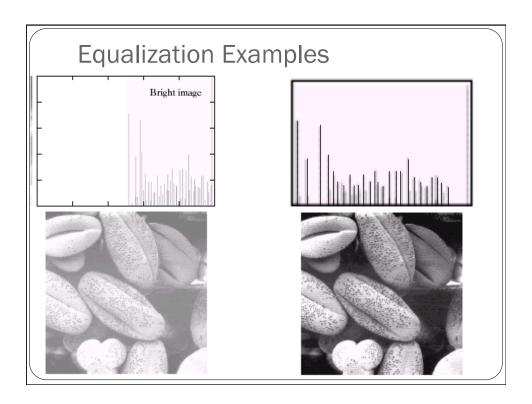


$$cdf_x(i) = \sum_{j=0}^{i} p_x(j)$$

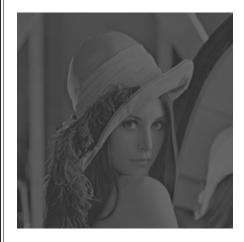


3) Map old value to new value

$$r_k = round\left(\frac{cdf(s_k) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L-1)\right)$$



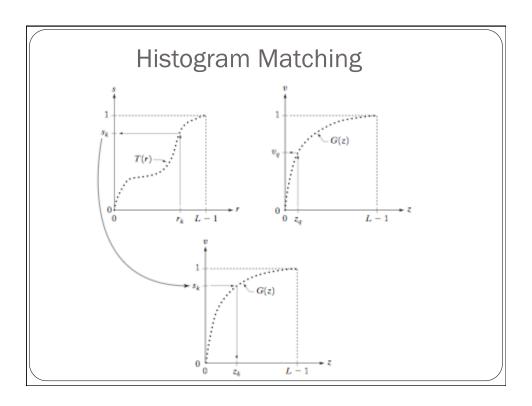
Histogram Equalization



Histogram Equalization - Limitations

1) Histogram Matching

• Histogram matching is similar to histogram equalization, except that instead of trying to make the output image have a flat histogram, we would like it to have a histogram of a specified shape, say $p_z(z)$.



Histogram Matching

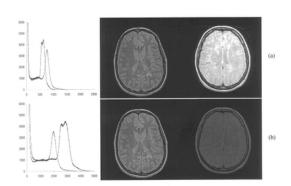
- 1. Obtain the histogram of the given image
- 2. Pre-compute a mapped level s_k for each level r_k using

$$s_k = T(r_k) = \sum_{j=0}^k \frac{n_j}{n}$$
 $K = 1, ..., L$

3. Obtain the transformation function G from the given $p_z(z)$ using

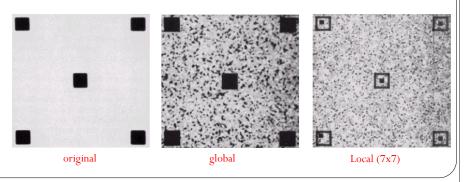
$$v_k = G(z_k) = \sum_{i=0}^k p_z(z_i) = s_k$$

- 4. Pre-compute z_k for each value s_k using a iterative scheme
- 5. For each pixel in the original image, if the value of the pixel is r_k , map this value to its corresponding level s_k , then map level s_k into the final level z_k .



2) Local Enhancement

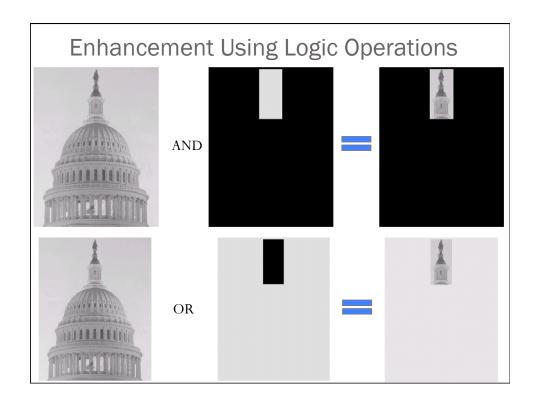
- The histogram processing methods discussed previously are global, in the sense that pixels are modified by a transformation function based on the gray-level content of an entire image.
- However, there are cases in which it is necessary to enhance details over small areas in an image.



Operations

Image Operations

- Just as with numbers, we can apply different operations to an image
 - Addition: +
 - Subtraction: -
 - Multiplication: *
 - And: &&
 - Or: ||
 - Derivative: $\frac{dx}{dy}$
 - Average
 - Mean



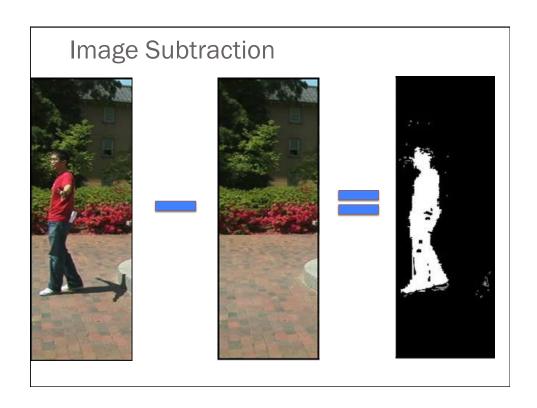


Image Averaging

- When taking pictures in reduced lighting (i.e., low illumination), image noise becomes apparent.
- A noisy image g(x,y) can be defined by

$$g(x, y) = f(x, y) + \eta(x, y)$$

where f(x, y): an original image $\eta(x, y)$: the addition of noise

 One simple way to reduce this granular noise is to take several identical pictures and average them, thus smoothing out the randomness.

Image Averaging

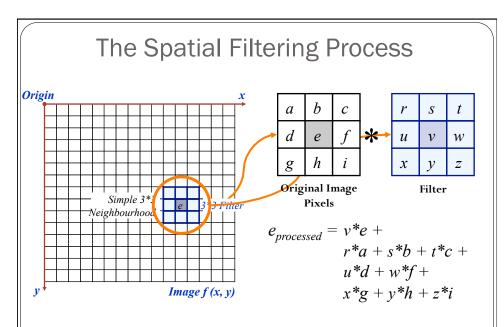
Basics of Spatial Filtering

• In general, linear filtering of an image f of size MxN is given by

$$g(x,y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s, y+t)$$

 This concept called convolution. Filter masks are sometimes called convolution masks or convolution kernels.

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9



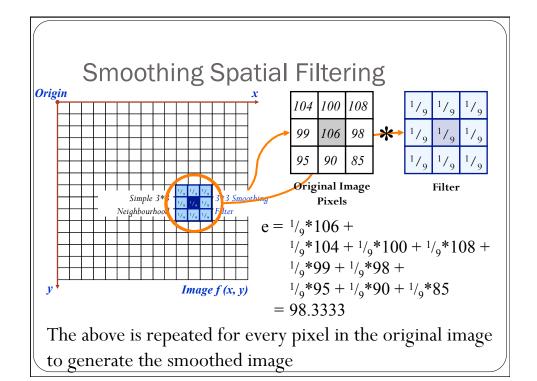
The above is repeated for every pixel in the original image to generate the filtered image

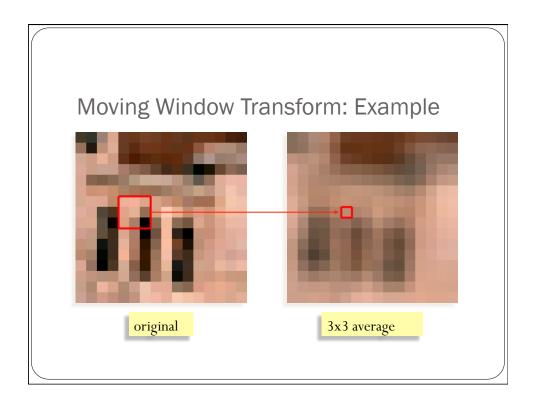
Smoothing Spatial Filters

- •One of the simplest spatial filtering operations we can perform is a smoothing operation
 - Simply average all of the pixels in a neighbourhood around a central value
 - Especially useful in removing noise from images
 - Also useful for highlighting gross detail

1/9	1/9	1/9
¹ / ₉	1/9	¹ / ₉
1/9	1/9	1/9

Simple averaging filter





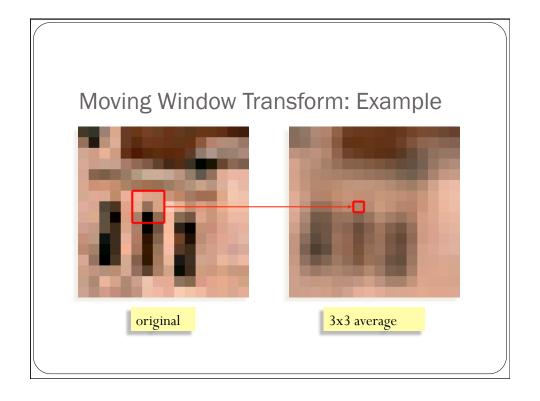


Image Smoothing Example

- •The image at the top left is an original image of size 500*500 pixels
- •The subsequent images show the image after filtering with an averaging filter of increasing sizes
 - 3, 5, 9, 15 and 35
- •Notice how detail begins to disappear

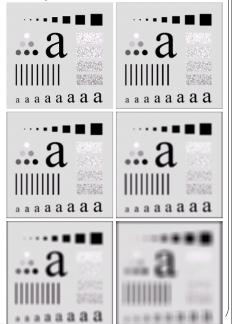
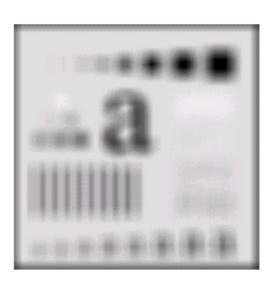


Image Smoothing Example



Basics of Spatial Filtering

• In general, linear filtering of an image f of size MxN is given by

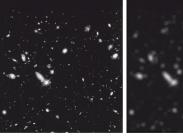
$$g(x,y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s, y+t)$$

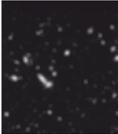
 This concept called convolution. Filter masks are sometimes called convolution masks or convolution kernels.

1/9	1/9	¹ / ₉
1/9	1/9	1/9
1/9	1/9	1/9

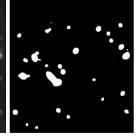
Another Smoothing Example

•By smoothing the original image we get rid of lots of the finer detail which leaves only the gross features for thresholding





Smoothed Image



Thresholded Image

Weighted Smoothing Filters

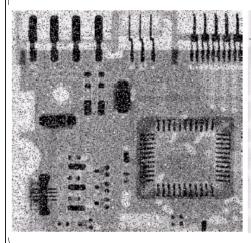
- •More effective smoothing filters can be generated by allowing different pixels in the neighbourhood different weights in the averaging function
 - Pixels closer to the central pixel are more important
 - Often referred to as a weighted averaging

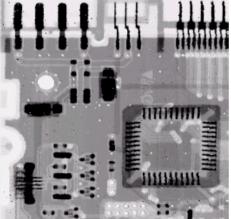
¹ / ₁₆	² / ₁₆	¹ / ₁₆
² / ₁₆	⁴ / ₁₆	² / ₁₆
¹ / ₁₆	² / ₁₆	¹ / ₁₆

Weighted averaging filter

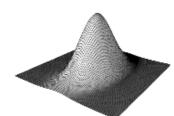
Order Statistic Filters

- Order-statistic filters
 - Median filter: to reduce impulse noise (salt-and-pepper noise)





Gaussian Smoothing

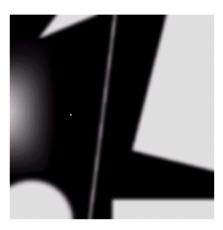


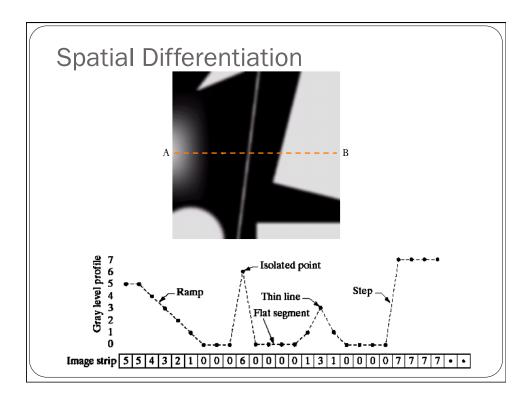
$$g(x,y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2 - \mu_x^2}{2\sigma^2}} e^{-\frac{y^2 - \mu_{yx}^2}{2\sigma^2}}$$

	1	4	7	4	1
	4	16	26	16	4
-	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Derivatives

Differentiation measures the *rate of change* of a function Let's consider a simple 1 dimensional example



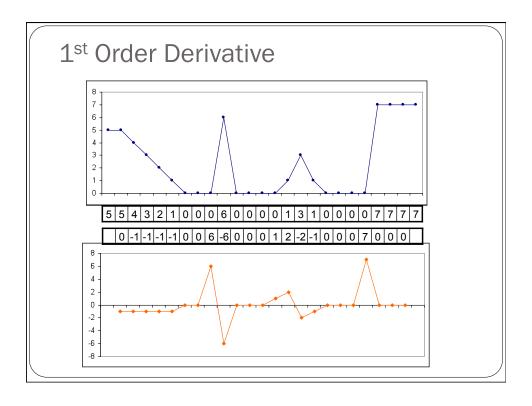


1st Order Derivative

The formula for the 1st derivative of a function is as follows:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

It's just the difference between subsequent values and measures the rate of change of the function

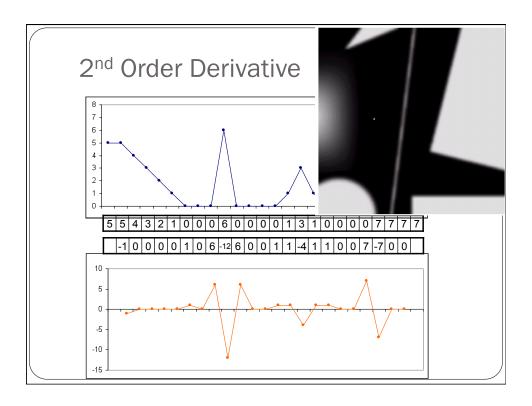


2nd Order Derivative

The formula for the 2^{nd} derivative of a function is as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

Simply takes into account the values both before and after the current value



Using Second Derivatives For Image Enhancement

The $2^{\rm nd}$ derivative is more useful for image enhancement than the $1^{\rm st}$ derivative

- Stronger response to fine detail
- Simpler implementation

The Laplacian

The Laplacian is defined as follows:

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

where the partial 1^{st} order derivative in the x direction is defined as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

and in the *y* direction as follows:

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

The Laplacian

So, the Laplacian can be given as follows:

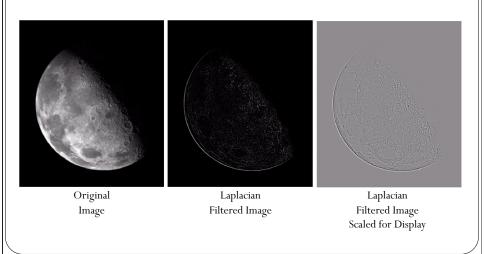
$$\nabla^2 f = [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)] - 4f(x, y)$$

We can easily build a filter based on this

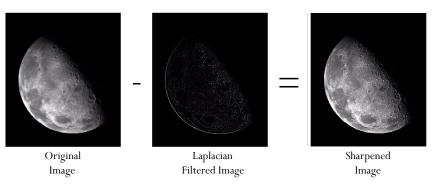
0	1	0
1	-4	1
0	1	0

The Laplacian

Applying the Laplacian to an image we get a new image that highlights edges and other discontinuities



Laplacian Image Enhancement



In the final sharpened image edges and fine detail are much more obvious

$$g(x,y) = f(x,y) - \nabla^2 f$$

Laplacian Image Enhancement

Simplified Image Enhancement

The entire enhancement can be combined into a single filtering operation

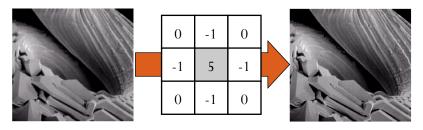
$$g(x,y) = f(x,y) - \nabla^2 f$$

$$= f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

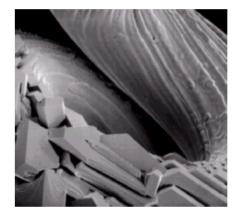
$$= 5f(x,y) - f(x+1,y) - f(x-1,y) - f(x,y+1) - f(x,y-1)$$

Simplified Image Enhancement (cont...)

This gives us a new filter which does the whole job for us in one step

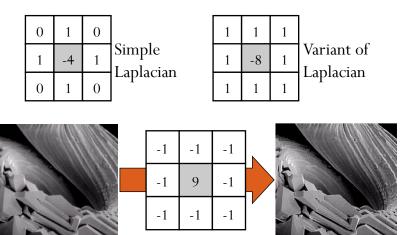


Simplified Image Enhancement



Variants On The Simple Laplacian

There are lots of slightly different versions of the Laplacian that can be used:



Acknowledgements

• Some of the images and diagrams have been taken from the Gonzalez et al, "Digital Image Processing" book.